GR Sessions 10: Cosmology

Wednesdays December 12, 2012

1. More De Sitter Space. Consider the de Sitter metric in flat slicing:

$$ds^2 = -dt^2 + e^{2Ht} d\vec{x}^2 ,$$

where H is a parameter known as Hubble's constant.

- (a) If two points are at an initial distance d_0 at time t = 0, what is the distance between them at a later time?
- (b) How long does it take for these two particles to start moving away from each other at the speed of light? Call this time interval t^* .
- (c) What will the separation of these two particles be after t^* ?
- (d) Write down the geodesic equations for for a massive particle.
- (e) Find the Ricci scalar for this spacetime.
- 2. FRW (Carroll 8.1). Consider an (N + n + 1)-dimensional spacetime with coordinates $\{t, x^I, y^i\}$ where I goes from 1 to N and i goes from 1 to n. Let the metric be

$$ds^2 = -dt^2 + a^2(t)\delta_{IJ}dx^I dx^J + b^2(t)\gamma_{ij}(y)dy^i dy^j ,$$

where δ_{IJ} is the usual Kronecker delta and $\gamma_{ij}(y)$ is the metric on an *n*-dimensional maximally symmetric spatial manifold. Imagine that we normalize the metric γ such that the curvature parameter

$$k = \frac{R(\gamma)}{n(n-1)}$$

is either +1, 0, or -1, where $R(\gamma)$ is the Ricci scalar corresponding to the metric γ_{ij} .

- (a) Calculate the Ricci tensor for this metric
- (b) Define an energy-momentum tensor in terms of an energ density ρ and pressure in the x^{I} and y^{i} directions, $p^{(N)}$ and $p^{(n)}$:

$$T_{00} = \rho$$
$$T_{IJ} = a^2 p^{(N)} \delta_{IJ}$$
$$T_{ij} = b^2 p^{(n)} \gamma_{ij}$$

Plug the metric and $T_{\mu\nu}$ into Einstein's equations to derive Friedmann-like equations for a and b (three independent equations in all).

(c) Derive the equations for the energy density and the two pressures at a static solution where $\dot{a} = \dot{b} = \ddot{a} = \ddot{b} = 0$, in terms of k, n, and N. Use these to derive expressions for the equation-of-state parameters $w^{(N)} = p^{(N)}/\rho$ and $w^{(n)} = p^{(n)}/\rho$, valid at the static solution.