Reeksnr.:

Naam:

1. (a) Toon aan dat

$$\sin^{-1}\frac{x-1}{x+1} = 2\tan^{-1}\sqrt{x} - \frac{\pi}{2}$$

Geef ook aan voor welke reële x-waarden deze uitdrukking zin heeft.

(b) Bereken $y' = \frac{dy}{dx}$ in het punt (x_o, y_o) wanneer gegeven is dat

$$\sqrt{x^2 + y^2} = c \tan^{-1} \frac{y}{x}$$

als
$$c = \frac{4\sqrt{2}}{\pi}$$
, $(x_o, y_o) = (1, 1)$

(c) Geef de algemene oplossing van de differentiaalvergelijking

$$y'' - 6y' + 13y = 0$$

met beginvoorwaarden y(0) = 0, y'(0) = 1.

(2.5 ptn)

Antwoord:

(a) 1.1pts: 0.3 for the domain + 0.8 for the calculation

As shown in Ex. 9, p. 195

Consider the function $f(x) = \sin^{-1} \frac{x-1}{x+1} - 2 \tan^{-1} \sqrt{x}$. The function is defined where $x \neq -1$ and $x \geq 0$, so the domain of f(x) is $[0, +\infty)$. The function is continuous (a combination of continuous functions) and differentiable (a combination of differentiable functions).

The first derivative of f is:

$$f'(x) = \frac{1}{\sqrt{1 - \left(\frac{x-1}{x+1}\right)^2}} \cdot \left(\frac{x-1}{x+1}\right)' - 2\frac{1}{1 + (\sqrt{x})^2} \cdot (\sqrt{x})'$$

$$= \frac{1}{\sqrt{1 - \left(\frac{x-1}{x+1}\right)^2}} \cdot \frac{x+1-x+1}{\left(x+1\right)^2} - 2\frac{1}{1+x} \cdot \frac{1}{2\sqrt{x}}$$

$$= \frac{x+1}{\sqrt{(x+1)^2 - (x-1)^2}} \cdot \frac{x+1-x+1}{(x+1)^2} - \frac{1}{\sqrt{x}(1+x)}$$

$$= \frac{2(x+1)}{\sqrt{4x}(x+1)^2} - \frac{1}{\sqrt{x}(1+x)}$$

$$= 0$$

and thus f is a constant function. If we substitute x = 0, then $f(0) = -\frac{\pi}{2}$ and $f(x) = f(0) = -\frac{\pi}{2}$ for every x in the domain. Making a final substitution using the definition of f,

$$f(x) = -\frac{\pi}{2} \to \sin^{-1}\frac{x-1}{x+1} = 2\tan^{-1}\sqrt{x} - \frac{\pi}{2}$$

This is valid if $x \in [0, +\infty)$, the interval where f is constant.

Common mistakes:

- From \sqrt{x} we get that $x \ge 0$. In this case $\lim_{x \to \infty} \frac{x-1}{x+1} = 1$, so no conflict with $\arcsin \frac{x-1}{x+1}$
- If you show that f(x) is constant, then you have to prove that it is equal to $-\frac{\pi}{2}$
- Don't confuse the domain with the range!

Reeksnr.:

Naam:

(b) 0.8pts: 0.5 for the differentiation + 0.3 for the calculation

First we impose the constraint $x \neq 0$. Using implicit differentiation:

$$\frac{1}{2\sqrt{x^2 + y^2}} (x^2 + y^2)' = c \frac{1}{1 + (\frac{y}{x})^2} (\frac{y}{x})'$$
$$\frac{x + yy'}{\sqrt{x^2 + y^2}} = c \frac{x^2}{x^2 + y^2} \cdot \frac{y'x - y}{x^2}$$
$$x + yy' = c \frac{y'x - y}{\sqrt{x^2 + y^2}}$$

In
$$(1,1)$$
 and if $c = \frac{4\sqrt{2}}{\pi}$:

$$1 + y' = c \frac{y' - 1}{\sqrt{2}}$$
$$y' = \frac{4 + \pi}{4 - \pi}$$

Common mistakes:

- Implicit differentiation: y is treated as a function of x. So, e.g, $\frac{d}{dx}(x^2+y^2)=2x+2y\frac{dy}{dx}$
- Differentiation of a fraction $\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{f'(x)g(x) f(x)g'(x)}{g^2(x)}$

(c) 0.6pts:0.3 to find the form of the solution and the correct roots + 0.3 to impose the initial conditions correctly

We have to solve a second order differential equation of the form ay'' + by' + cy = 0, with a = 0, b = -6, c = 13.

The characteristic equation is $r^2 - 6r + 13 = 0$ with a determinant D = -16 < 0. The solutions of the differential equations will thus have the form of $e^{(k+i\omega)t}$.

The roots of the characteristic equation are:

$$r_{1,2} = \frac{6 \pm i\sqrt{16}}{2} = 3 \pm 2i$$

The solutions of the differential equation are:

$$y_1 = e^{(3+2i)t}$$

 $y_2 = e^{(3-2i)t}$

and the general form, expressed with sin, cos (Case III, p. 205):

$$y = Ae^{3t}\cos(2t) + Be^{3t}\sin(2t)$$

Calculus	Τ	24	/10	/2016
Carcurus	1,	44	/ T U	/ 4010

Reeksnr.: Naam:

The constants A, B can be calculated from the initial conditions. Since y(0) = 0, A = 0 and then we can easily calculate y':

$$y'(t) = 2Be^{3t}\cos(2t) + 3Be^{3t}\sin(2t)$$

Applying the second condition, y'(0) = 1, we get $2B = 1 \rightarrow B = \frac{1}{2}$.

Thus the solution is:

$$y(t) = \frac{1}{2}e^{3t}\sin 2t$$

Common mistakes:

- Be careful in your calculations: D = 36 52 = -16
- If you find complex roots, $r = a \pm ib$, the corresponding solutions in terms of sin, cos **do not** have the imaginary unit i! (so no $\sin(ibt)$, $\cos(ibt)$)
- The derivative of $Be^{3t}cos(2t)$ is not $-6Be^{3t}sin(2t)$! Use the product rule correctly!

Reeksnr.: Naam:

- 2. Gegeven de functie $f(x) = (3x^{7/5} \frac{\pi}{x})\cos(\frac{\pi}{2} x)$.
 - (a) Benoem het domein van de functie f(x). Is $(f \circ f)(x)$ een even of oneven functie, of geen van beide (leg uit).
 - (b) Bereken de limiet

$$\lim_{x \to 0} f(x)$$

en argumenteer hoe de functie f continu uitbreidbaar is op heel \mathbb{R} .

(c) Bereken de vergelijking van de raaklijn aan de grafiek van f in $x = -\pi$.

(2.5 ptn)

Antwoord:

a) 1.2pts: 0.4 for the domain + 0.8 to characterize the function

The function is defined everywhere except x = 0. First we can re-write f by substituting $\cos(\frac{\pi}{2} - x) = \sin x$.

There is **no need** to calculate $(f \circ f)(x)!$ It is easy to verify that f(x) is an even function, as:

- $\sin x$ is an odd function
- $3x^{7/5} \frac{\pi}{x}$ is also an odd function

To determine if $(f \circ f)(x)$ is even or odd:

$$(f \circ f)(-x) = f(f(-x)) = f(f(x)) = (f \circ f)(x)$$

and thus the function $(f \circ f)$ is even.

Common mistakes:

- The function f is defined when $x \neq 0$! There is no restriction for $\cos(\frac{\pi}{2} x) = \sin x$
- The function $\sin x$ is **not** an even function!
- The product of two uneven functions is an even function!

b) 0.7pts: 0.4 for the correct value of the limit + 0.3 for the continuity of f Since f is an even function, we only need to calculate the limit $\lim_{x\to 0^+} f(x)$

$$\begin{split} \lim_{x \to 0^+} f(x) &= \lim_{x \to 0^+} \left(3x^{7/5} - \frac{\pi}{x} \right) \sin x \\ &= \lim_{x \to 0^+} \frac{3x^{7/5} - \pi}{x} \sin x \\ &= \lim_{x \to 0^+} \left[(3x^{7/5} - \pi) \frac{\sin x}{x} \right] \\ &= \lim_{x \to 0^+} \left[(3x^{7/5} - \pi) \right] \lim_{x \to 0^+} \left[\frac{\sin x}{x} \right] \\ &= -\pi \cdot 1 \\ &= -\pi \end{split}$$

Calculus	Τ	24	/10	/201	6
Calculus	1,	44	/ TO	/ 401	U

Reeksnr.:

Naam:

If we want f to be continuous, then $f(0) = -\pi$. So f is:

$$f(x) = \begin{cases} \left(3x^{7/5} - \frac{\pi}{x}\right)\cos\left(\frac{\pi}{2} - x\right), & x \neq 0 \\ -\pi, & x = 0 \end{cases}$$

Common mistakes:

- The limit is **not** equal to zero, as the form $\pm \infty \cdot 0$ is **not** defined!
- To make f continuous for every x, we must define $f(0) = \lim_{x\to 0} f(x) = -\pi$

c) $0.6pts: 0.3 ext{ for } f' + 0.3 ext{ for the equation of the line}$

We know that f is differentiable in $x = -\pi$ with:

$$f'(x) = \left(\frac{21}{5}x^{2/5} + \frac{\pi}{x^2}\right)\sin x + \left(3x^{7/5} - \frac{\pi}{x}\right)\cos x$$

and thus $f'(-\pi) = -1 + 3\pi^{7/5}$. The general form of the equation of a tangent line at (x_o, y_o) is:

$$y - y_o = f'(x_o)(x - x_o)$$

The value of f at $x = -\pi$ is $f(-\pi) = 0$, so the equation of the tangent line at $x = -\pi$:

$$y = (-1 + 3\pi^{7/5})(x + \pi)$$

Common mistakes:

• $\cos \frac{\pi}{2} = 0$ and nothing else! $(\neq \frac{\sqrt{2}}{2})$ etc.