During this exam, k denotes an algebraically closed field.

Question 1

Let $f: Y \to X$ be a morphism of affine k-varieties. What is $Z(\ker(\mathcal{O}(f)))$?

Question 2

- (a) Let R be a ring that is a principal ideal domain but not a field. What is the Krull dimension of R? Explain your answer.
- (b) Let R be a Noetherian ring of Krull dimension 0. Show that R has finitely many maximal ideals. (*Hint: what does spec*(R) look like?)
- (c) Give an example of a Noetherian ring with Krull dimension at least one such that that R has finitely many prime ideals.

Question 3

Let $r, s \in \mathbb{N}_0$ and take N = rs + r + s. Consider the map

$$\psi: \mathbb{P}_k^r \times \mathbb{P}_k^s \to \mathbb{P}_k^N$$

that sends the couple

$$((a_0:\cdots:a_r),(b_0:\cdots:b_s)) \in \mathbb{P}^r_k \times \mathbb{P}^s_k$$

to the point

 $(a_0b_0:a_0b_1:\cdots:a_rb_{s-1}:a_rb_s)\in\mathbb{P}_k^N.$

Show that ψ is well-defined and injective. Show that its image is a closed subvariety of \mathbb{P}_k^N . This projective variety is called the product of \mathbb{P}_k^r and \mathbb{P}_k^s , and the map ψ is called the *Segre embedding*. (*Hint: try to determine the homogeneous ideal associated to the image of* ψ . It is convenient to denote the homogeneous coordinates on \mathbb{P}_k^N by z_{ij} with $i \in \{0, \ldots, r\}$ and $j \in \{0, \ldots, s\}$.)

Question 4

Exercise 5.5.4 from the course notes.

(a) Let f be a rational function on \mathbb{A}_k^n , for some integer n > 0. Show that there exist polynomials p and q in $k[x_1, \ldots, x_n]$ with $q \neq 0$ such that

$$\operatorname{dom}(f) = \{ x \in \mathbb{A}^n_k \mid q(x) \neq 0 \}$$

and such that f = p/q on dom(f). Thus the set of points where f is not defined is either empty or a hypersurface in \mathbb{A}_k^n .

(b) Consider the subvariety

$$X = \mathbb{A}_k^2 \setminus \{(0,0)\}$$

of \mathbb{A}^n_k . Prove that the map

$$\mathcal{O}(\mathbb{A}^2_k) \to \mathcal{O}(X) : f \mapsto f_{|X|}$$

is an isomorphism. Conclude that \boldsymbol{X} is not affine.