- Name:
 - (1) Consider a simple pendulum where the angle $\theta(t)$ varies with maximum $\pm \theta_0$. What is the probability density $\rho(\theta)$?
 - (2) Consider a general scaling transformation

$$Q = \Lambda q, \quad P = \Lambda' p$$

where Λ and Λ' are real symmetric positive matrices. Show that that transformation is canonical if and only if $\Lambda' = \Lambda^{-1}$.

- (3) Use the method of Hamilton-Jacobi to treat a simple harmonic oscillator in two dimensions.What is the Hamilton-Jacobi equation here?Solve it.Use it to give the positions as functions of time and of the initial conditions.
- (4) Prove the Young inequality, that for all $\alpha, \beta \ge 1, x, p > 0$,

$$px \le \frac{x^{\alpha}}{\alpha} + \frac{p^{\beta}}{\beta}, \qquad \frac{1}{\alpha} + \frac{1}{\beta} = 1$$

(5) A bead of mass m slides without friction on a circular loop of radius a. The loop lies in a vertical plane and rotates about a vertical diameter with constant angular velocity ω . Gravity acts.

a) For angular velocity $\omega > \omega_c$ greater than some critical value, the bead can undergo small oscillations about some stable equilibrium point θ_0 . Find ω_c and $\theta_0(\omega)$.

b) Obtain the equations of motion for the small oscillations about θ_0 as a function of ω and find the period of these oscillations.

- (6) Show that the logistic map x → r x(1 x) on [0, 1] has a two-cycle for all r > 3 and discuss its stability.
- (7) Consider the motion of a perfectly elastic rigid ball of fixed mass m between two perfectly elastic walls whose separation ℓ slowly varies. Prove that the product $v \ell$ of the product of the speed of the ball and the separation distance is an adiabatic invariant.