analytic mechanics, part C. Maes 23 January 2014 Name:

1. Suppose that the real-valued function g is defined on an open interval $U \subset \mathbb{R}$. Assume that g is convex on U and differentiable in x_0 . Show that for all $x \in U$,

$$g(x) - g(x_0) \ge g'(x_0) (x - x_0)$$

For higher dimensions, we want f defined on an open convex set $U \subset \mathbb{R}^n$. How to state then the inequality?

2. Discuss the problem of the harmonic oscillator using the Hamilton-Jacobi method.

<u>Hint</u>: to get an integral of the Hamilton-Jacobi equation, try writing S = -at + f(x).

3. A bead of mass m slides freely on a frictionless circular wire of radius r. The circular wire rotates itself in a horizontal plane about some chosen point on the circular wire with a constant angular velocity ω . Derive the motion of the bead.