General Relativity - Exercise session

Wednesday October 09 and Friday October 11, 2013

- 1. Let A be an event in spacetime with coordinates $(t_A, x_A, y_A, z_A) = (3, \sqrt{5}, 0, 0)$ in a given frame S.
 - (a) Can you find a reference frame S', with the same origin as S, where the event A has coordinates $(t'_A, x'_A, y'_A, z'_A) = (2, 2, 1, 1)$?
 - (b) Let now denote with B another event, with coordinates $(t_B, x_B, y_B, z_B) = (2, 0, 0, 0)$ in S. Is it possible to find another frame S", still with the same origin as S, where $(t''_A, x''_A, y''_A, z''_A) = (t_B, x_B, y_B, z_B)$? What are the coordinates $(t''_B, x''_B, y''_B, z''_B)$ of event B in frame S"?
- 2. Frame S' moves with velocity \vec{v} relative to frame S. A rod in frame S' makes an angle θ' with respect to the forward direction of motion. What is this angle θ as measured in S?
- 3. Prove the following statements.
 - (a) If S^{μ} is timelike and $S^{\mu}P_{\mu} = 0$ then P_{μ} is spacelike.
 - (b) Two ortogonal lightlike vectors are proportional.
- 4. [Based on Carroll Ch. 1 Ex. 6] In Euclidean three-space, let p be the point with coordinates (x, y, z) = (1, 0, -1). Consider the following curves that pass through p:

$$x^{i}(\lambda) = (\lambda, (\lambda - 1)^{2}, -\lambda)$$
$$x^{i}(\mu) = (\cos \mu, \sin \mu, \mu - 1)$$

- (a) Calculate the components of the tangent vectors to these curves at p in the coordinate basis $\{\partial_x, \partial_y, \partial_z\}$.
- (b) Let $f = x^2 + y^2 yz$. Calculate the expressions $df/d\lambda$ and $df/d\mu$ and compute their explicit values in p. What is the relation between $df/d\lambda$, df and the tangent vector to $x^i(\lambda)$?
- 5. For electric and magnetic fields, show that $B^2 E^2$ and $\vec{E} \cdot \vec{B}$ are invariant under Lorentz transformations. Are there any invariants, quadratic in \vec{B} and \vec{E} , that are not merely algebraic combination of two above?
- 6. Consider the infinite cylinder $S^1 \times \mathbb{R}$.
 - (a) Describe it as an embedded surface in the three-dimensional space $ds^2 = dx^2 + dy^2 + dz^2$, *i.e.* describe the subspace $S^1 \times \mathbb{R}$ of \mathbb{R}^3 as an equation in (x, y, z). Parametrize this space using two coordinates and find the induced metric on this space.

- (b) In contrast to the circle S^1 , show that the infinite cylinder $S^1 \times \mathbb{R}$ can be covered with just one chart, by explicitly constructing the map.
- 7. Show that the determinant of the metric tensor $g = \det(g_{\mu\nu})$ is not a scalar.
- 8. Consider the following change of coordinates

$$t' = t$$

$$x' = x \cos \omega t + y \sin \omega t$$

$$y' = -x \sin \omega t + y \cos \omega t$$

$$z' = z$$

where ω is a constant. Find the transformed components for the tangent vector with components $u^{\mu}(x) = \delta_t^{\mu}$.

- 9. [Carroll Ch. 2 Ex. 9] In Minkowski space, suppose $*F = q \sin \theta d\theta \wedge d\phi$.
 - (a) Evaluate d(*F) = *J
 - (b) What is the two form F equal to?
 - (c) What are the electric and the magnetic fields equal to for this solution?
- 10. Prove (3.33) and (3.34) in Carroll. Hint: (3.33) immediately follows from $\partial_{\lambda}g = gg^{\rho\sigma}\partial_{\lambda}g_{\rho\sigma}$.
- 11. On the surface of a two-sphere, $ds^2 = d\theta^2 + \sin^2 d\phi^2$, the vector **A** is equal to \mathbf{e}_{θ} at $\theta = \theta_0$, $\phi = 0$. What is **A** after is parallel transported around the circle $\theta = \theta_0$? What is the norm of **A**?
- 12. Consider the spacetime metric $ds^2 = -f(r)dt^2 + f(r)^{-1}dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2)$ and the vector field $u^{\alpha} = e^{\psi}(\delta^{\alpha}_t + \Omega \delta^{\alpha}_{\phi})$, with ψ and Ω functions of r and θ only.
 - (a) Impose the normalization condition $u_{\alpha}u^{\alpha} = -1$ to compute e^{ψ} .
 - (b) Find what are the conditions under which the for the vector field u^{α} is the four velocity of a geodesic trajectory, i.e. the tangent vector to a geodesic.

Notation: δ^{α}_{β} is just the Kronecker's delta, so for instance $u^{t} = e^{\psi}, u^{r} = 0, \ldots$ in u^{α} above.