Exam Functional Analysis

September 5, 2013

Instructions

- You may write your solutions in English or in Dutch. The oral exam is in English or in Dutch, depending on your preference.
- The exam lasts for **4 hours.** You are allowed to eat or drink.
- After 2 hours, you hand in your solutions for questions 1 and 2. During the third and fourth hour, you work on questions 3 and 4, and you will have your oral exam about questions 1 and 2. After 4 hours, the exam ends.
- The exam is **open book.** This means that you may use
 - the lecture notes,
 - your own notes,
 - the two reference books.

You are not allowed to use

- any electronic equipment,
- other books than the two reference books.
- The four questions have the same weight.

Write your name on every sheet that you hand in !

Good luck !

Stefaan Vaes

1. Let *H* be a Hilbert space with orthonormal basis $(e_n)_{n \in \mathbb{N}}$. Denote by P_n the orthogonal projection of *H* onto span $\{e_0, \ldots, e_n\}$. Let $K \subset H$ be a compact subset. Prove that

$$\lim_{n \to \infty} P_n \xi = \xi \quad \text{uniformly in } \xi \in K.$$

Is the convergence also uniform over all ξ in the unit ball of H?

Make Exercise 1 in the beginning of Section 8.3. So you have to prove the following statement.
Let X be a Banach space. Denote by i : X → X^{**} the isometry defined by i(x) : X^{*} → C : ω → ω(x) for all x ∈ X. Prove that the image i((X)₁) of the unit ball of X is weak^{*} dense in the unit ball (X^{**})₁ of X^{**}.

As explained in Section 8.3, you have to proceed as follows. Denote by K the weak^{*} closure of $i((X)_1)$ inside X^{**} . Suppose that $\theta \in X^{**} \setminus K$. You have to prove that $\|\theta\| > 1$. Do this by applying the Hahn-Banach separation theorem to K and $\{\theta\}$.

3. Let (X, \mathcal{P}) be a seminormed space and equip X with the seminorm topology. Let $K \subset X$ be a compact subset and let $\mathcal{U} \subset X$ be a neighborhood of 0. For every $\lambda > 0$, define

$$\lambda \mathcal{U} = \{ \lambda x \mid x \in \mathcal{U} \} .$$

Prove that there exists a $\lambda_0 > 0$ such that $K \subset \lambda \mathcal{U}$ for all $\lambda > \lambda_0$. Hint: we used a variant of this in the proof of the Markov-Kakutani fixed point theorem.

4. Consider the Banach space $\ell^{\infty}(\mathbb{N})$ with its supremum norm. Denote by $1 \in \ell^{\infty}(\mathbb{N})$ the function that is equal to 1 everywhere. Define the subset $K \subset \ell^{\infty}(\mathbb{N})^*$ given by

$$K = \left\{ \omega \in \ell^{\infty}(\mathbb{N})^* \mid \omega(1) = 1, \|\omega\| \le 1, \omega(FG) = \omega(F)\,\omega(G) \text{ for all } F, G \in \ell^{\infty}(\mathbb{N}) \right\}.$$

- a) Prove that K is compact in the weak* topology on $\ell^{\infty}(\mathbb{N})^*$.
- b) For every subset $A \subset \mathbb{N}$, define $\chi_A \in \ell^{\infty}(\mathbb{N})$ given by

$$\chi_A(n) = \begin{cases} 1 & \text{if } n \in A, \\ 0 & \text{if } n \notin A. \end{cases}$$

Prove that for every $A \subset \mathbb{N}$ and every $\omega \in K$, we have that $\omega(\chi_A) \in \{0, 1\}$.

c) Fix $n \in \mathbb{N}$ and define $\delta_n \in K$ given by $\delta_n(F) = F(n)$ for all $F \in \ell^{\infty}(\mathbb{N})$. Prove that the singleton $\{\delta_n\}$ is an open subset of K in the weak* topology. *Hint: use the function* $\chi_{\{n\}}$.