Exam Probability Measure

Gabor Szabó

August 25, 2020

- (a) Suppose that G is a countable group, with the σ-algebra 2^Ω. Describe in full detail all the translation-invariant measures, i.e., if µ : G → [0, ∞] is a measure, then for every A ⊆ G, µ(A) = µ(gA) for all g ∈ G.
 - (b) Consider the measure space \mathbb{Q} with its Borel- σ -algebra. Does there exist something like a "*Lebesgue measure* on \mathbb{Q} ?". Justify your answer!

If needed, explain what goes wrong in the construction analogous to the construction of the Lebesgue measure on the real line.

2. Let $A \subseteq \mathbb{R}$ be a Lebesgue measurable subset with $\lambda(A) < \infty$. Show that for every $\varepsilon > 0$, there exist pairwise disjoint half-open intervals $I_1, \ldots, I_n \subseteq \mathbb{R}$ such that for $E = \bigcup_{k=1}^n I_k$, it holds that $\lambda(A \Delta E) \le \varepsilon$.

(Hint: Remember the definition of the Lebesgue outer measure.)

- 3. Let $f : \mathbb{R} \to \mathbb{R}$ be a Lebesgue integrable function.
 - (a) Show for every $\varepsilon > 0$ that there exists a compactly supported continuous $h : \mathbb{R} \to \mathbb{R}$ with

$$\int_{\mathbb{R}} |f - h| d\lambda \le \epsilon$$

(**Hint:** Assume first that f is a characteristic function on a Lebesgue measurable set A. You can use the result of this claim in the second part of the problem.)

(b) Prove the following limit equality:

$$\lim_{t \to 0} \int |f(x) - f(x+t)| d\lambda(x) = 0$$

4. Let $(\Omega, \mathcal{M}, \mathbb{P})$ be a probability measure space and let $A_n \subseteq \mathcal{M}$ be a sequence of independent events. We define the following real random variable $Y_n = \frac{1}{n} \sum_{k=1}^n \chi_{A_k}$ as well as the probability average $p_n = \frac{1}{n} \sum_{k=1}^n \mathbb{P}(A_k)$. Show that $Y_n - p_n$ converges to zero in probability.

Is this a special case of the weak law of large numbers? Explain! If it is relevant, describe which assumptions need to be added to make it a special case of the weak law of large numbers.