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Problem 1 (Oral). Let f : R Ñ R be a bounded continuous function such that fp0q � 0.

Is the integral
³8
0

fpxq
xex

dx always finite? If not, construct a counterexample. Can you impose
additional natural conditions on f that would imply integrability?

Solution. Let us first say, which points are problematic. One issue is at 0, because the
function 1

x
is not continuous there, and as always we have to worry about infinity. Actually,

infinity is not that important, because f is bounded, so there exists a constant M ¡ 0 such
that |fpxq|

xex
¤Me�x for x ¥ 1, and this function is clearly integrable.

Let us deal with 0 now, which actually can be a problem. We want to ensure that the
integral

³1
0
|fpxq|
xex

dx is finite. It will be more convenient to assume now that f is positive,
which we can do. Since ex is bounded above and below on r0, 1s, we only have to deal with³1
0
fpxq
x

dx. Recall that functions of the form x ÞÑ xα are integrable around zero precisely for
α ¡ �1. So, as soon as fpxq ¤ Cxβ for some β ¡ 0 around zero, the integral will be finite.

A slightly weaker condition would be differentiability at 0; then limxÑ0
fpxq
x
� f 1pxq, so this

ratio remains bounded.
In order to cook up a counterexample, we need a function that changes more slowly that

any power; logarithm is such a function. More specifically, define

fpxq :�

#
1

logp 1
x
q

for x ¤ 1
2

logp2q for x ¡ 1
2

.

And compute
³ 1

2

0
fpxq
x

dx �
³ 1

2

0
1

x logp 1
x
q
dx. By substitution u � � logpxq, we reduce to the

integral
³8
logp2q

1
u
du, which is infinite.

There is also an abstract way of proving that there must exist a counterexample, but
it requires some functional analysis. The first step is employing the closed graph theorem:
view f ÞÑ

³1
0
fpxq
x

dx as a linear functional on the Banach space of continuous functions on
r0, 1s that vanish at 0, denoted by C0pp0, 1sq. The closed graph theorem will say that if this
functional is everywhere defined, i.e. finite for any such function f , then it must be bounded.
But by the Riesz representation theorem (for a locally compact space), any such functional
is given by a regular Borel measure with finite variation. But in our case the measure is
1
x
dx, which is infinite, hence there must exist a counterexample. Another approach would

be the following: because of the boundedness of the functional, one does not have to come
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up with an actual counterexample but only a sequence of approximate counterexample, i.e.
a sequence of continuous functions vanishing at 0, bounded 1, but such that the sequence
of integrals is unbounded. In order to do that, one may try to approximate the constant
function 1 almost everywhere by an increasing sequence of continuous functions vanishing at
0. A specific example might be the following: fn � minpnx, 1q – a linear function growing
fast on interval r0, 1

n
s and then constant.

Problem 2. Let pfnqnPN be a sequence of measurable functions on r0, 1s such that
³
|fn|

2dx �
e�n. Does the series

°8
n�1 fnpxq converge for almost every x P r0, 1s? Does it converge for

every x?

Solution. Since r0, 1s equipped with the Lebesgue measure is a probability space, we have by

Schwarz inequality
�³
|f |dx

�2
¤
³
|f |2dx. It follows that

³
|fn|dx ¤ e�

n
2 . By the monotone

convergence theorem we have » 1

0

8̧

n�1

|fn|dx ¤
8̧

n�1

e�
n
2   8.

Since the integral of the series is finite, the series must converge almost everywhere. It does
not necessarily converge everywhere, because we can redefine all the functions to equal 1 at
0, i.e. fnp0q � 1, without changing the condition on the integrals. But then

°8
n�1 fnp0q �

8.

Problem 3. Let pΩ,F ,Pq be a probability space such that Ω � r0, 1s2, F is the Borel σ-
algebra, and P is the Lebesgue measure. Consider the random variables X and Y given by
Xpx, yq :� x and Y px, yq � Y . Compute the conditional expectation EpcospXY q|Y q.

Assume now that X1 and X2 are independent, real random variables, and that g : R2 Ñ R
is a bounded continuous function. Can you find a formula for EpgpX1, X2q|X2q? Verify it
using the definition.

Solution. First of all, the result will be a measurable function of Y , so something of the
form gpY q. In order to compute g, note that intuitively gpyq � EpcospXY q|Y � yq. Since X
and Y are independent, any condition on Y does not impose X, so this should be equal to³1
0

cospxyqdx � sinpyq
y

.

In general, we also need to integrate out the first variable, so the result will by hpY q,
where hpyq :� EgpX, yq. We will now check that it satisfies the definition. We have to
check that EhpY q1Y �1pBq � EgpX, Y q1Y �1pBq for any Borel subset B � R. Note first that
EhpY q1Y �1pBq �

³
B
hpyqdµY pyq. By definition hpyq � EgpX, yq �

³
R gpx, yqdµXpxq, so we

arrive at »
B

p

»
R
gpx, yqdµXpxqqdµY pyq.

Since we are dealing with probability measures and g is bounded, we may apply Fubini
theorem to obtain

³
R�B gpx, yqdpµX b µY qpx, yq. By independence, the product measure is

equal to the distribution of pX, Y q, so the integral is equal to EgpX, Y q1Y �1pBq, which is
exactly what we wanted.
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Problem 4. Let pεnqnPN be a sequence of independent, identically distributed random vari-
ables such that Ppεn � 0q � Ppεn � 1q � 1

2
. Define X :�

°8
n�1

εn
2n

. Check that X is a
random variable and compute its distribution.

Solution. Note that
°8
n�1

εn
2n

¤
°8
n�1

1
2n

� 1. It follows that X is a limit of finite sums,
which certainly are random variable, so it is a random variable itself.

To compute its distribution, we will use the binary expansion of a real number in r0, 1s
Note that some numbers have non-unique binary expansion but we can neglect them. Indeed,
by Borel-Cantelli lemma, almost surely infinitely many εn’s are equal to 1, so almost every
number we get has infinite expansion. By the same taken, infinitely many εn’s are equal to
0, so we do not get expansions that have only 1’s from some point on. Let us now compute
the probability that X P

�
k�1
2m
, k
2m

�
. Since the length of this interval is equal to 1

2m
, it means

that the values of ε1, . . . , εm are specified so that the sum
°m
n�1

εn
2n

� k�1
2m

and we have a
complete freedom with other εn’s. It means that that the measure of rk�1

2m
, k
2m
q is equal to

1
2m

. Since these intervals form a semiring that generates the Borel σ-algebra, we conclude
that the distribution of X is the Lebesgue measure, i.e. the distribution is uniform.

Another idea is to use the characteristic function. The series defining X converges ab-
solutely, in particular it converges in distribution, so we can compute the characteristic
function of X as a limit of characteristic functions of finite sums. Compute first the charac-
teristic function of εn

2n
to get 1

2

�
1� expp it

2n
q
�
. Since these random variables are indepedent,

the characteristic function of the sum is equal to the product of characteristic functions,
hence the characteristic function of

°m
n�1

εn
2n

is equal to
±m

n�1
1
2

�
1� expp it

2n
q
�
. Note that

1� expp it
2n
q � expp it

2n�1 qpexpp� it
2n�1 q � expp it

2n�1 qq � 2 expp it
2n�1 q cosp t

2n�1 q. Therefore we end
up with the product

m¹
n�1

expp
it

2n�1
q cosp

t

2n�1
q.

The exponential gives a geometric series, which we can sum easily and in the limit it yields
expp it

2
q; we have to deal with the cosines. Multiply the product

±m
n�1 cosp t

2n�1 q by sinp t
2m�1 q

and use the formula sinpxq cospxq � sinp2xq
2

. Note that you get sinp t
2m
q, so you can pair it

cosp t
2m
q. At every step you obtain a sine with doubled argument and you divide by 2. The

result is 1
2m

sinp t
2
q. Recall that we multiplied by sinp t

2m�1 q, so we get

m¹
n�1

cosp
t

2n�1
q �

sinp t
2
q

2m sinp t
2m�1 q

.

The limit of this expression is equal to
2 sinp t

2
q

t
, therefore the characteristic function of X is

equal to
2 expp it

2
q sinp t

2
q

t
; we can simplify it to eit�1

it
. Note that it is precisely the characteristic

function of the uniform distribution.

Good luck!
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