Commutative Algebra Exam - 2022/23

16th of January 2023

Question 1. What does it mean that a covariant functor $F : \mathcal{F} \to \mathcal{D}$ between two categories is left exact? Is the functor $\operatorname{Hom}_R(M, -)$ from Mod_R to itself left or right exact? [2 pts.]

Question 2. Explain what a local property of an R-module M is. List all te local properties of modules, rings, or morphisms seen during the course. [2 pts.]

Exercise 1. Let R be a ring and $I \subseteq R$ an ideal. Prove

- a) If $J_1, J_2 \subseteq R$ are ideals of R such that $I \subseteq J_1 \cup J_2$, then $I \subseteq J_i$ for some i = 1, 2. [1 pt.]
- b) If $\mathfrak{p}_1, \ldots, \mathfrak{p}_n \subseteq R$ are prime ideals of R such that $I \subseteq \mathfrak{p}_1 \cup \cdots \cup \mathfrak{p}_n$, then $I \subseteq \mathfrak{p}_i$ for some $i = 1, \ldots, n$. (*Hint: use induction on the number n of prime ideals.*) [2 pts.]
- c) If R as a UFD with an infinite number of maximal ideals, then R has an infinite number of principal prime ideals. [2 pts.]

Exercise 2. Let $\{x_n\}_{n\in\mathbb{N}}, x_n\in\mathbb{C}$, be a sequence of complex numbers. Consider

$$a_k x_{n+k} + a_{k-1} x_{n+k-1} + \dots + a_0 x_n = 0, \quad \forall n \in \mathbb{N}, \quad a_i \in \mathbb{C}, \tag{1}$$

a homogeneous linear recurrence relation with constant coefficients. It can be shown that the set of solutions S of (1) is a finite dimensional complex vector space.

a) Let $T({x_n}_{n\in\mathbb{N}}) = {x_{n+1}}_{n\in\mathbb{N}}$ be the translation operator. Show that S has the structure of a $\mathbb{C}[T]$ -module and

$$S \cong \frac{\mathbb{C}[T]}{(T-\alpha_1)^{m_1}} \oplus \frac{\mathbb{C}[T]}{(T-\alpha_2)^{m_2}} \oplus \dots \oplus \frac{\mathbb{C}[T]}{(T-\alpha_r)^{m_r}}.$$

where $\alpha_1, \ldots, \alpha_r \in \mathbb{C}$ are the roots of the polynomial $p(z) = a_k z^k + a_{k-1} z^{k-1} + \cdots + a_0$ with multiplicities $m_1, \ldots, m_r \in \mathbb{N}$. [2 pts.]

b) Prove that the vector space of solutions S of any homogeneous linear recurrence relation (1) is generated by the sequences

$$\{\alpha_i^n\}_{n \in \mathbb{N}}, \{n\alpha_i^{n-1}\}_{n \in \mathbb{N}}, \dots, \{n^{m_i-1}\alpha_i^{n-m_i+1}\}_{n \in \mathbb{N}}, \text{ for all } i = 1, \dots, r.$$

As an application, give a general formula for the *n*-th Fiboncci number F_n . Recall that $F_{n+2} = F_{n+1} + F_n$ with $F_0 = F_1 = 1$. [2 pts.]

Exercise 3. (Related to the assignments) Let R be a ring and M an R-module. Let Ass M be the set of associated primes of M.

- a) Prove that $\mathfrak{p} \in Ass M$ if and only if there is an injection $\iota : R/\mathfrak{p} \hookrightarrow M$ of *R*-modules. [1 pt.]
- b) If $N \subset M$ is an *R*-submodule, show that Ass $M \subset Ass N \cup Ass M/N$. [1 pt.]
- c) Show that for a prime ideal \mathfrak{p} of R, Ass $R/\mathfrak{p} = {\mathfrak{p}}$. Deduce that, if R is Noetherian and M is finitely generated, the set Ass M of associated primes of M is finite. [1 pt.]
- d) Let $ZD(M) = \{r \in R \mid \exists m \in M \setminus \{0\}, rm = 0\}$ denote the set of zero divisors of M. If R is Noetherian, show that

$$\operatorname{ZD}(M) = \bigcup_{\mathfrak{p} \in \operatorname{Ass} M} \mathfrak{p}.$$

[2 pts.]

e) Let (R, \mathfrak{m}) be a Noetherian local ring. If $\mathfrak{m} \setminus \mathfrak{m}^2$ consists entirely of zero divisors, prove there is a nonzero $x \in R$ such that $x\mathfrak{m} = 0$. (*Hint: consider elements of the form* $a + y^n$ with $a \in \mathfrak{m} \setminus \mathfrak{m}^2, y \in \mathfrak{m}, n \in \mathbb{N}$) [2 pts.]