Commutative Algebra Exam - January 2025

Question 1

Name all the universal properties discussed in the course. State the universal property of the quotient of a set by an equivalence relation, no proof is required. [2 pts]

Question 2

Let R be a ring. Find a condition on R for which submodules of free R-modules are also free. Give a counterexample for rings not satisfying this condition. [2 pts]

Problem 1

Let M be a flat R-module. Let $r \in R$ be a non-zero divisor. Show that for any $m \in M$, if rm = 0, then m = 0. [2 pts]

Problem 2

Let M be an R-module and let $I \subseteq R$ be an ideal. The I-torsion $\Gamma_I(M)$ of M is defined as the set

$$\Gamma_I(M) = \{ m \in M \mid \exists n \in \mathbb{N}, I^n m = 0 \}.$$

- a) Show that the *I*-torsion defines a functor $\Gamma_I \colon \operatorname{Mod}_R \to \operatorname{Mod}_R$. [2 pts]
- b) Prove that Γ_I is a left exact functor. [2 pts]
- c) Assume that R is Noetherian and let $S \subseteq R$ be a multiplicative set. Show that Γ_I commutes with the localisation functor S^{-1} : $\operatorname{Mod}_R \to \operatorname{Mod}_{S^{-1}R}$. [2 pts]

Problem 3

Let (R, m) be a Noetherian local ring. Define the ideal

$$I = \cap_{k \ge 0} m^k.$$

- a) Prove there is an ideal J ⊆ R with the property J∩I = mI that is maximal with respect to inclusion and such that for any f ∈ m, there exists α ∈ N satisfying (J: f^α) = (J: f^{α+1}).
 [2 pts]
- b) For any $f \in m$, show that $f^{\alpha} \in J$. [3 pts]
- c) Prove that $m^n \subseteq J$ for some $n \in \mathbb{N}$, and deduce that I = 0. [3 pts]