Exam Differential Geometry - January 2025

1. [3 points]

Let n be a positive integer and $k \in \{0, ..., n\}$. Consider the map

$$F_k \colon \mathbb{R}^n \to \mathbb{R}, (x_1, \dots, x_n) \mapsto \sum_{i=1}^k x_i^2 - \sum_{i=k+1}^n x_i^2.$$

- a) For which values of k is $F_k^{-1}(1)$ a submanifold of $\mathbb{R}^n?$
- b) For which values of k is $F_k^{-1}(1)$ a compact submanifold of \mathbb{R}^n ?

2. [3 points]

On \mathbb{R}^2 consider the vector field $X = (x+y)\frac{\partial}{\partial x} + x\frac{\partial}{\partial y}$. Fix a point $(x_0, y_0) \in \mathbb{R}^2$. Denote by γ the integral curve of X satisfying $\gamma(0) = (x_0, y_0)$.

- a) Compute explicitly the integral curve γ .
- b) Show that $\lim_{t\to\infty} \gamma(t) = 0$ (This question was wrong and therefore removed)
- 3. [4 points] Let M be a manifold, N a submanifold of codimension 1. Assume that there is a section Y of the vector bundle $TM|_N \to N$ which is no-where tangent to N, i.e. $Y_p \notin T_pN$ for all $p \in N$.
 - a) If M is orientable, does it follow that N is an orientable manifold?
 - b) If N is an orientable manifold, does is follow that M is orientable too?

Remark: $TM|_N \to N$ denotes the restriction to N of the tangent bundle of M.

- 4. [6 points]
 - a) Let \mathfrak{g} be a Lie algebra, \mathfrak{h} be a Lie ideal of \mathfrak{g} , i.e. $[x, v] \in \mathfrak{h}$ for all $x \in \mathfrak{g}$ and $v \in \mathfrak{h}$. Does there exist a Lie algebra structure on $\mathfrak{g}/\mathfrak{h}$ such that the projection

$$\pi \colon \mathfrak{g} \to \mathfrak{g}/\mathfrak{h}, x \mapsto x \mod \mathfrak{h}$$

is a Lie algebra map?

Now let G be a connected Lie group, let H be a connected normal Lie subgroup.

- b) Provide an example showing that H is not necessarily a closed subset of G.
- c) Prove or disprove: when G is simply connected, H has to be a closed subset of G.

Remark: Recall that a subgroup H is normal iff $ghg^{-1} \in H$ for all $g \in G$, $h \in H$. **Hint:** Denote by \mathfrak{g} the Lie algebra of G an be \mathfrak{h} the Lie algebra of the normal Lie group H. You can use (without needing to prove it) that \mathfrak{h} is a Lie ideal of \mathfrak{g} .

5. [2 points]

On \mathbb{R}^3 , consider that 1-form $\alpha = f dx$ where $f \in C^{\infty}(\mathbb{R}^3)$.

- a) Which are the functions f for which α is a closed 1-form?
- b) Which are the functions f for which α is an exact 1-form?

6. [2 points]

Given a manifold M, state the relation between foliations of M and involutive distributions on M. you do not need to give a proof.