
Exam solutions
Statistical Mechanics
18 December 2018, 14:00-16:00

Problem 1 (5 points)

Consider a system of three quantum particles. Each of them can be in one of three states
with energies 0, 2ε and 5ε. The particles are in equilibrium with temperature T .

a) Compute the canonical partition function and internal energy of the system assuming
that the particles obey the Bose-Einstein statistics. Discus the low and high tempera-
ture limits.

b) Now assume that the particles obey Fermi-Dirac statistics. What is the canonical
partition function and the internal energy? Discuss again the low and high temperature
limits.

Solution: Let us label the available energy states by the value of the energy {0, 2ε, 5ε}.
With the notation (p, q, r) we will mean that one particle occupies state p, the second state
q and the third state r.

Consider the case of two indistinguishable bosons first. The particles are indistinguishable
so possible configurations are (0, 0, 0), (0, 0, 2ε), (0, 0, 5ε), (0, 2ε, 2ε), (0, 2ε, 5ε), (0, 5ε, 5ε),
(2ε, 2ε, 2ε),(2ε, 2ε, 5ε), (2ε, 5ε, 5ε), (5ε, 5ε, 5ε) Thus the total partition functions is

ZB = 1 + e−2βε + e−5βε + e−4βε + e−7βε + e−10βε + e−6βε + e−9βε + e−12βε + e−15βε , (1)

where β−1 ≡ kBT .
Now let us study the fermionic system. The particles are again indistinguishable. Due

to the Pauli exclusion principle there cannot be two fermions occupying the same quantum
state. Thus there is only one possible configuration (0, 2ε, 5ε). Therefore the partition
function is

ZF = e−7βε . (2)

At low temperatures we have β � 1 and thus

ZB ≈ 1 + e−2βε , ZF ≈ e−7βε . (3)

At high temperatures we have β � 1 and thus

ZB ≈ 10 , ZF ≈ 1 , (4)

as expected both partition functions approach a constant.

Problem 2 (7 points)



Consider a system of two non-interacting one-dimensional quantum harmonic oscillators
of frequencies ω1 ≡ αω and ω2 ≡ 1

α
ω. The energy levels of the systems are given by
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where n1,2 = 0, 1, 2, 3 . . ..

a) Calculate the canonical partition function of the system, Z, and the average energy,
E, as a function of the temperature T .

b) Analyze the low and high temperature behavior of E. Discuss the relation between
your results at high temperature and the equipartition theorem.

c) Use the leading term in your expansion of E at low temperatures to find the value of
the parameter α for which E is minimized for fixed ω.

Solution:
The partition function of the system is (where we use the geometric series)
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For the average energy one finds
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At high temperatures we have

E ≈ 2kBT +
~

12kBT
(ω2

1 + ω2
2) . (7)

The leading terms in this expression reproduce exactly the expected result from the equipar-
tition theorem.

At low temperatures one finds
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The leading term in the energy at low temperatures is

E ≈ ~ω
2
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α
. (9)

For a fixed frequency ω this expression has a local minimum at α = 1. Thus we can conclude
that the energy at low temperature is minimized when the two harmonic oscillators have
equal frequency.

Problem 3 (8 points)

An average number, N , of bosons of spin S = 0 is confined to a two-dimensional domain
with surface A. The gas is ultrarelativistic with a single particle energy ε = cp, where c is
the speed of light in vacuum and p is the absolute value of the momentum.



a) Define z ≡ eβµ, with µ the chemical potential1 and β ≡ 1
kBT

, and compute N as a
function of z. Assume that the system is at high temperature T . Your answer should
give N(z, A, T ) and you should expand it up to terms quadratic in z.

b) Compute the pressure, P , of this system as a function of z, A and T . While still being
in the high-temperature regime, use the result for N(z, A, T ) from a). above to find
P (N,A, T ) (keep up to quadratic terms in N). Discuss your results and the relation
to the ideal gas law.

Hint: Throughout your calculations you may use the following identity

n! =

∫ ∞
0

e−ttndt .

Solution: The average number of particles is

N =
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∫ ∞
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dp , (10)

Setting z ≡ eβµ and x ≡ βpc we can write this as
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Now use that µ < 0 and assume that the temperature is high and expand in a Taylor series
in z (up to quadratic terms in z) to find
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Now we use the relation
PV

kBT
= log Ξ , (13)

where Ξ is the partition function in the grand canonical ensemble to find (below we use the
series expansion of log(1 − y) for small y, interchange the sum and the integral, and define
x = βcp)
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Keeping only the first two terms in this series in z and expressing z in terms of N one finds

P ≈ NkBT

A
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As expected, since we are dealing with bosons, the leading order correction to the ideal gas
law has a negative sign.

1Remember that for free bosonic systems the chemical potential is negative.


