Exam Probability & Measure

NAME:

1. We consider \mathbb{R} with its standard measure structure (i.e., Borel σ -algebra and Lebesgue measure λ). Let $f \in \mathcal{L}^1(\mathbb{R})$ and consider the function

$$\varphi: \mathbb{R} \to \mathbb{C}: x \mapsto \varphi(x) = \int_{\mathbb{R}} \frac{f(y)}{1+x^2+y^2} \, d\lambda(y).$$

- (a) Is φ continuous? Explain.
- (b) Is φ Lebesgue integrable over \mathbb{R} ? Explain.
- 2. Let μ_1 and μ_2 be two finite positive measures on a measurable space (Ω, \mathfrak{M}) . Consider the real measure $\mu = \mu_1 - \mu_2$.
 - (a) Can one conclude that $|\mu| = \mu_1 + \mu_2$?
 - (b) Suppose there exists some $A \in \mathfrak{M}$ such that $\mu_1(A^c) = \mu_2(A) = 0$. Compute the measures μ^{\pm} appearing in the Jordan decomposition of μ .
 - (c) After making (b), what conjecture is now tempting to make? Formulate it precisely and examine whether the conjecture really holds.
- 3. Consider the probability space $(\Omega, \mathfrak{M}, \mathbf{P})$ where $\Omega = [0, 1] \times [0, 1], \mathfrak{M}$ is the standard Borel σ -algebra on Ω , and \mathbf{P} is the Lebesgue measure. Consider the random variables $X : \Omega \to \mathbb{R} : (x, y) \mapsto x$ and $Y : \Omega \to \mathbb{R} : (x, y) \mapsto y$. Denote with $X \wedge Y$ the function from Ω to \mathbb{R} given by $(X \wedge Y)(x, y) = \min\{x, y\}$.

Compute $\mathbf{E}(X \mid X \land Y)$. Verify using the definition of conditional expectation that your result is correct.

4. Suppose that $(\varphi_n)_n$ is a sequence of characteristic functions (of real random variables) that converges pointwise to a function $\psi : \mathbb{R} \to \mathbb{C}$ which is continuous in 0. Can one conclude that ψ is a characteristic function (of some real random variable)? Explain.

Success !

Exam Probability & measure

NAME:

1. We consider \mathbb{R} with its standard measure structure (i.e., Borel σ -algebra and Lebesgue measure λ). Let $f \in \mathcal{L}^1(\mathbb{R})$ and consider the function

$$\varphi: \mathbb{R} \to \mathbb{C}: x \mapsto \varphi(x) = \int_{\mathbb{R}} \frac{f(y)}{1+x^2+y^2} \, d\lambda(y).$$

- (a) Is φ continuous? Explain.
- (b) Is φ Lebesgue integrable over \mathbb{R} ? Explain.
- 2. Let μ_1 and μ_2 be two finite positive measures on a measurable space (Ω, \mathfrak{M}) . Consider the real measure $\mu = \mu_1 - \mu_2$.
 - (a) Can one conclude that $|\mu| = \mu_1 + \mu_2$?
 - (b) Suppose there exists some $A \in \mathfrak{M}$ such that $\mu_1(A^c) = \mu_2(A) = 0$. Compute the measures μ^{\pm} appearing in the Jordan decomposition of μ .
 - (c) After making (b), what conjecture is now tempting to make? Formulate it precisely and examine whether the conjecture really holds.
- 3. Consider the probability space $(\Omega, \mathfrak{M}, \mathbf{P})$ where $\Omega = [0, 1] \times [0, 1], \mathfrak{M}$ is the standard Borel σ -algebra on Ω , and \mathbf{P} is the Lebesgue measure. Consider the random variables $X : \Omega \to \mathbb{R} : (x, y) \mapsto x$ and $Y : \Omega \to \mathbb{R} : (x, y) \mapsto y$. Denote with $X \wedge Y$ the function from Ω to \mathbb{R} given by $(X \wedge Y)(x, y) = \min\{x, y\}$.

Compute $\mathbf{E}(X \mid X \land Y)$. Verify using the definition of conditional expectation that your result is correct.

4. Let G be a locally compact group. Let λ be 'the' left and ρ 'the' right Haar measure on G. Can one conclude, in general, that λ and ρ are absolutely continuous w.r.t. each other? If not, illustrate this by providing an explicit example; if so, prove that result and determine the Radon-Nikodym derivatives.

Success !