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1. A general static, spherically symmetric metric in d space-time dimensions
can be written as
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where d€2;_, is the standard round metric on S%2, defined inductively by
dQ} = d¢? and dQ2,, = dO? + sin?6,d02 for i > 1, with 0 < ¢ < 27 and
0 < 0; < w. Assume that A(r) and B(r) are analytic functions of r such that
both have a simple zero at r = 7, > 0 and are positive for r > r,.

(a) Show that radial null geodesics are given by ¢ + r* =constant, where
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with g > r, an arbitrary constant. Show that r* — —occ as r — r,.

(b) Obtain the metric in ingoing Eddington-Finkelstein coordinates. Explain
why this metric can be analytically continued through r = r,.

(c) The timelike Killing field is & = 8/6¢ in static coordinates. Show that
k = 0/0v in EF coordinates, and that r = r is a Killing horizon of k. What
is the surface gravity?

(d) Check that your formula gives the correct answer for the Schwarzschild
solution.

(e) What happens if A and B both have a zero of order p > 1 at r = r,
instead of a simple zero?

2. The generalization of the Schwarzschild solution to spacetimes with a
cosmological constant A is given by the following metric (in units where

e=6=1)
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(a) Discuss briefly the causal structure of the Schwarzschild-de Sitter space-
time given by (3) with A > 0, e.g. by drawing the Kruskal diagram.
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{b) Discuss the behavior of geodesics of massive particles in these space-
times, in particular how a nonzero cosmological constant (either positive or
negative) modifies the bound orbits of the Schwarzschild geometry.

3(a) Consider two well-separated, approximately Schwarzschild black holes
at rest. Let their masses be M; and M. Assume that they coalesce to form
a Schwarzschild black hole of mass Ms, with gravitational waves carrying off
energy E in the process. Use conservation of energy and the second law of
black hole mechanics to prove that the efficiency of this process, defined as
n=E/(My+ M) obeysp <1 —1/+/2.

(b) Let E denote the maximum energy that can be extracted from a Kerr
black hole in the Penrose process. The efficiency of this process is n = E/M
where M is the initial mass of the black hole. Calculate what is the largest
possible value of 7.

4. Let ¥ and L be the energy and angular momentum per unit mass of a
neutral particle in free fall within the equatorial plane, i.e. on a timelike
(o = 1) or null {¢ = 0) geodesic with § = 7/2, of a Kerr black hole.

(a) Show that the particle’s Boyer-Lindquist radial coordinate r satisfies (in
units where ¢ = G = 1)
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where A is an affine parameter, and the cffective potential V' is given by
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(b) For an extremal Kerr black hole with a = M, the last stable circular
orbit of a corotating massive particle has R, = M and E. = 1//3. A
particle initially in a circular orbit with much larger radius » >> M (and thus
FE = 1) will emit gravitational radiation and should therefore slowly spiral
in to smaller radii as it loses energy, remaining in an approximately circular
orbit until it reaches the orbital radius R.. The binding energy Ep per unit
rest mass in the last stable circular orbit is given by £, = 1—I5. and represent
the fraction of the original rest energy that is radiated away during the time
in which the particle spirals to R.. Derive the analogous binding energy of
the closest stable geodesic circular orbit in the Schwarzschild geometry and
compare with exiremal Kerr.
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