Statistical Inference and Data Analysis

January 11, 2021

1 Closed book part

Question 1

Given is a random variable X with $X \sim \text{Expo}(\theta)$ and a random sample $X_1, ..., X_n$.

- 1. What is the distribution of $\sum_{i=1}^{n} X_i$, explain why. Can you make a pivotal quantity for θ by using $\sum_{i=1}^{n} X_i$?
- 2. Use part 1) to derive an exact confidence interval of level (1α) for θ .
- 3. We are interested in finding the Bayes estimator. As a prior density we use the density of a $\text{Gamma}(\alpha,\beta)$ distribution. Find the posterior distribution.
- 4. Calculate the Bayes estimator T^B .
- 5. Give the corresponding credible region for θ and discuss it.

Question 2

- 1. Proof: $\hat{\beta} \sim N_p(\beta, (\mathbf{X}^T \mathbf{X})^{-1} \sigma^2)$
- 2. Proof $E(S^2) = \sigma^2$, S^2 was given.
- 3. Derive the likelihood ratio test for the hypothesis $H_0: \mathbf{C}\beta = 0$ where \mathbf{C} has r lines. You can use the following as given:
 - Y is normally distributed
 - (contained the expression of the likelihood function as given on p197)
 - $L(\hat{\beta}, \hat{\sigma}^2) = (2\pi\hat{\sigma}^2)^{-n/2}e^{-n/2}$ (for the complete model) and $L(\hat{\beta}_0, \hat{\sigma_0}^2) = (2\pi\hat{\sigma_0}^2)^{-n/2}e^{-n/2}$ (for the restricted model).
- 4. Define the F statistic.
- 5. Give the relation between the F statistic and the likelihood ratio statistic.

2 Open book part

Question 1

Given is the rv. X and a random sample $X_1, ..., X_n$ of X having the following density function:

$$f(x,\theta) = \frac{1}{4n}\theta^{-4}x^7 \exp(-\frac{x^2}{\theta})$$

for x > 0 and $\theta > 0$. Also we know that

- $X^2/\theta \sim \text{Gamma}(4,1)$
- $E(X^r) = \frac{1}{6}\Gamma(4 + \frac{r}{2})\theta^{r/2}$
- $\Gamma(m+r/2) = \frac{(2m)!}{m!2^{2m}\sqrt{\pi}}$

1. Show that the MLE for θ is given by:

$$\hat{\theta_n} = \frac{\sum_{i=1}^n X_i}{4n}$$

and give its bias, variance and MSE.

- 2. Discuss the consistency of this MLE.
- 3. Give the asymptotic normallity result for the MLE.
- 4. Calculate the Method of Moments estimator (note that it differs from the MLE) and denote it as $\hat{\theta_n}^{MoM}$, give also the asymptotic normality result of $\hat{\theta_n}^{MoM}$ and calculate the ARE between the method of moments estimator and the MLE.
- 5. Use part 3) to construct an approximate confidence interval for θ .
- 6. Given the hypothesis: $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$, find the most powerful test of size α if we say that $\theta_1 < \theta_0$.

Question 2

Given the random vector $X = (X_1, X_2, X_3)^T$ which is normally distributed with mean 0 and variance-covariance matrix:

$$\Sigma_X = \begin{pmatrix} 0.2 & 0 & 0.2 \\ 0 & 0.2 & 0.2 \\ 0.2 & 0.2 & 0.4 \end{pmatrix}$$

1. Show that the 3 principal components are given by

$$Y_1 = \frac{1}{\sqrt{6}} (X_1 + X_2 - 2X_3)$$
$$Y_2 = \frac{1}{\sqrt{2}} (X_1 - X_2)$$
$$Y_3 = \frac{1}{\sqrt{3}} (X_1 + X_2 - X_3)$$

Also find their distributions.

2. Given were 3 scree plots and biplots (plot of the first two PCs with arrows for the components of X_1 , X_2 and X_3) in , we had to explain which one of the plots belonged to a sample of the random vector X. The same was asked for 3 biplots.