Besturingssystemen

Examenvragen

Dit document is mede opgebouwd op basis van
dit Google Doc (klik).


https://docs.google.com/document/d/1n0cjUlullt7e20FYEyFh12OaG2xNvSk_CPuXoz7F2IM/edit

1 Theorie

Beslissingen besturingssysteem

Op verschillende plaatsen moet het besturingssysteem beslissingen nemen (vb.
nieuwe thread/proces als de vorige is afgelopen, context switch bij schedulers, ...).
Waar moet het besturingssysteem nog beslissingen nemen? Hoe worden ze geim-
plementeerd en welke algoritmes kunnen hiervoor gebruikt worden?

Antwoord

Process scheduling Whenever CPU sitsidle, OS mustselect processinready queue
to be executed.
Algorithmsused: FCFS, SJF, Priority scheduling, RR, ...

Load balancing Keep workload balanced between multiple CPUs. Push/pull mi-
gration.

CPU hardware scheduling Decide which hardware thread to run on each core.

Paging (page replacement) Whenincreasing multiprogramming, over-allocated
memory (no free frames when page fault occurs).
Swap out process, free all frames, reduce level of MP ~ page replacement.
Need to select victim frame and update associated page and frame tables.
Frame-allocation algorithm and page-replacement.
Page replacement: FIFO (Belady’s anomaly: page-fault rate may increase
as the number of allocated frames increases). Optimal page replacement:
LRU.LRU-approximation: additional-reference-bits, second-chance, enhanced
second-chance. Additional methods: page-buffering (free-frame pool).
Frame allocation: equal allocation, proportional allocation. Global vslocal
replacement.

Disk scheduling Practical relevance: having fastaccess time and large disk band-
width.
Improve access time and bandwidth by managing the order in which diskI/O
requests are serviced. Disk scheduling algorithms: FCFS, SSTF, SCAN/C-
SCAN, LOOK/C-LOOK.
SSTF is common, increases performance over FCFS. Avoid starvation, use
LOOK/C-LOOK.
Factors: fileallocation (contiguous, linked, indexed), priority of requests (de-
mand paging vs application I/O, writes vs reads).



Bestand openen in programma

Wat gebeurt er als je op een bestand klikt dat in een programma opent? Bv een
wordbestand dat dan in word opent. Leg gedetailleerd en volledig uit en geef voor-
beelden uit windows 7 en of linux.

Antwoord

1.

2.

Fork new process/thread

open () system call with access-mode parameter passes file name to the log-
ical file system. Checked against access rights. Using process domain, look
upaccessrightsinaccess matrix. If read-only or read / write, access allowed.

Check system-wide open-file table and get location IF present, add entry
in per-process open-file table ELSE search in-memory mount table for vol-
ume, in-memorydirectory-structure cache forrecentlyaccessed directories,
searchdirectoryforfile (orlookup directorylocationinvolume control block,
ifnot cached) and add new entryin system-wide open-file table (copy of FCB)
+new entry in per-process open-file table.

Per-process open-file table contains copy of FCB +file pointer, file-open count,
disk location of the file, access rights of all open files.

open () callreturns pointer to appropriate entryin per-process open-file ta-
ble (P-PO-FT). All operations performed via this pointer (specified via an
index in P-PO-FT, so no searching required).

Readingafile: system call specifying name of file and where (in memory) to
put the next block of the file. Directory is searched for the associated entry.
System holds current-file-position pointer (in system-wide open-file table,
pointed to by entry in per-process open file table): the location in the file
where the next read/write is to take place.

If needed to write to file, acquire exclusive lock.

Removed from per-process open-file table at close, system-wide open-file
table entry’s open count decremented.



Staten van een proces

Geef alle staten waarin een process zich kan bevinden, en zeg wat er gebeurt bij
elke overgang.

Antwoord

New The process is being created (by parent process).

Ready The process is waiting to be assigned to a processor.
New toready: long-term scheduler puts process into ready queue in memory.
Running to ready: preempted / swapped out, interrupt occurs.
Waiting to ready: completion of I/O.

Running Instructions are being executed.
Ready to running: short-term scheduler assigns CPU to process.

Waiting The processis waiting for some event to occur (such as an I/O comple-
tion or reception of a signal).
Running to waiting: process is interrupted (requests I/O, wait () for termi-
nation of child)

Terminated The process finished execution.
Runningtoterminated: process terminates, resources deallocated, return exit
status when parent callswait ().



Booten

Bespreek in detail wat er gebeurt als de computer opstart. Vanaf het moment dat
je de power knop induwt tot het moment dat de computer volledig is opgestart.

Antwoord

e Booting = the procedure of starting a computer by loading the kernel.

e Bootstrap program /bootstrap loader (sequential series of blocks,loaded as
an image from ROM into memory, starts executing at fixed location; root
partition). Bootstrap program initializes all aspects of system from CPU to
device controllers and the contents of main memory.

Code in boot ROM instructs device controller to read the boot blocks into
memoryand then starts executingthat code. Itthenlocates the kernel,loads
itinto main memory, and starts its execution.

e Root partition / boot block (fixed location on disk) is mounted at boot time
and contains operating-system kernel.

¢ Finally, OSnotesinitsin-memorymounttablethatafile systemis mounted,
along with type of system.

e PCs: 2-step process; simple bootstrap loader fetches a more complex boot
program from disk partition, which in turn loads the kernel.

e CPU reset (reboot/power up): instruction register loaded with predefined
memory location of initial bootstrap program, located on ROM.

e Tasksofbootstrap program: run diagnostics on state of the machine, if passed,
continue booting; initialize all system aspects (CPU registers - device con-
trollers - contents of main memory)

e Large OS:bootstrap loader stored in firmware (ROM), OS on disk.
Bootstrap programruns diagnostics +code thatreads and executes code from
boot (control) block on disk.

Boot block loads remainder of bootstrap loader.

e OS probes hardware buses to determine what devices are present and in-
stalls corresponding interrupt handlers into the interrupt vector.

e Fullbootstrap programisloaded, find kernelinfile system,load itinto mem-
ory, start its execution. Now, system is running.



Threads vs. processen

Threads en processen zijn concepten die heel belangrijk zijn in een besturingssys-
teem. Leg deze concepten ui enleghetverschil tussen beide uit. Leguithoe een BS
deze entiteiten implementeert en beheert. Bespreek daarna alle delen van een BS
waar threads en/of processen een rol spelen. Waar mogelijk en zinnig geef je vbn
uit Linux en/of Windows XP.

Antwoord

Process Program in execution. Represented in the OS by PCB (process control
block).
A process consists out of program code, program counter, registers, stack,
data (and heap). A program (passive) becomes a process (active) when its
executable file is loaded into memory.
Linux: Process identity: unique id (PID), credentials (user ID, group ID de-
termine access rights), personality, namespace.

Process Control Block State, program counter (nextinstructiontobeexecuted),
CPUregisters, CPU-schedulinginfo (priority, pointers to scheduling queues),
memory-management info (base and limit registers, page tables), account-
ing info, I/O status info (allocated I/O devices, pointer to open-file table).
Linux: Process context: scheduling context, accounting, file table, file-system
context, signal-handler table, virtual memory context.

Thread Flow of control within a process.
Uses same address space (code, data, files) as process, but has its own regis-
ters and stack. Executes certain set of statements. A process consists out of
itsaddress space +at least 1 thread of control.

Processvsthread Much more beneficial to create threads instead of processes
(if possible), because of less overhead (economy). Threads use the already
existing address space, instead of having to create a new one when creating
anew process instead.

Other benefits: responsiveness, resource sharing, scalability.

Multithreading Multiple threads ofaprocess execute different sets of code state-
ments.

Implementation Thread library (system calls).
Implicit threading: thread pool



Management: Process scheduling Selectingawaitingprocess fromtheready queue
and allocating the CPU toit.
Process enters, putinjob queue (ondisk). Readyand waiting to be executed:
readyqueue (inmemory). Wheninterrupted or waiting for I/O: waiting queue.
List of processes waiting for a particular I/O device: device queue.
Algorithms: FCFS, SJF, RR, Priority scheduling, ...
Long-term scheduler: selects processes from job queue on disk and loads
them into ready queue in memory.
Short-term scheduler / CPU scheduler: selects from ready queue and allo-
cates CPU.
Medium-term scheduler: select from swapped out processes and put into
ready queue.

Context switch When interrupt occurs, save state, switch to other process, state
restore to resume.

Process operations
Creation (by parent process) - parent blocks until child terminates or par-
ent continues concurrently
Linux: fork () createsnew process without running new program code. Sub-
process continues execution where parentleft off. exec () loadsnewbinary
object into process’s address space and new executable starts executing in
context of existing process.

Termination (finishes executing, resources deallocated, parent terminates
child - when exceeded resource usage or task no longer required or parent is
exiting) -resources deallocated, return exit status when parentcallswait ().

Role of processes / threads IPC,multithreading, synchronization, (virtual) memory-
management, I/O, protection.



Interrupts en exceptions

Interrupts en exceptions uitleggen, hoe ze werken, waarom ze belangrijk zijn en
voorbeelden gevenvan hs16 en 17.

Antwoord

Interrupts Occurrences that induce OS to execute urgent, self-contained rou-
tine. Used to handle asynchronous events and to trap to supervisor-mode
routines in the kernel.

CPU senses hardware called interrupt-request line after each executed in-
struction.

When CPU detects that a controller has asserted a signal on the interrupt-
request line, CPU performs state save and jumps to the interrupt-handler
routine.

Interrupt handler determines cause of interrupt, performs necessary pro-
cessing, performs sate restore and executes a return from interrupt instruc-
tion to return the CPU to the execution state prior to interrupt.

Device controller raises interrupt by asserting signal on interrupt-request
line. CPU catches interrupt and dispatches it to interrupt handler.

Handler clears interrupt by servicing device.

Interrupt-controller hardware CPU has two interrupt-request lines.

e Nonmaskable interrupt line: events such as unrecoverable mem-
Ory errors.

e Maskable interrupt line: can be turned off by CPU before execu-
tion of critical instruction sequences that mustnotbe interrupted.
(Used by device controllers to request service.)

Interrupt mechanismacceptsanaddress (number that selectsaspecificinterrupt-
handlingroutine, offset in interrupt vector). Reduces need for single inter-
rupt handler to search all possible sources of interrupts to determine which
one needs service.

Interrupt chaining: each element in interrupt vector points to head of list
ofinterrupthandlers. Interruptraised, handlers on correspondinglist called
one by one, until one is found that can service request. Compromise be-
tween overhead of huge interrupt table and inefficiency of dispatching to a
single interrupt handler.

Interrupt priority levels: enable CPU to defer handling low-priority inter-
rupts without masking all interrupts and makes it possible for high-priority
interrupt to preempt execution of low-priority interrupt.



Atboottime, OS probeshardware buses to determine what devices are present
andinstallscorrespondinginterrupthandlersintotheinterruptvector. Dur-
ing I/O, various device controllers raise interrupts when they are ready for
service. These signifythat outputhas completed, or thatinput dataare avail-
able, or that a failure has been detected.

Windows: kernel dispatcher provides trap handling for exceptionsand inter-
rupts generated by hardware or software.

Exceptions Software based interrupt caused by an error (e.g.: division by zero,
invalid memory access, attempt to execute privileged instruction from user
mode).

Interrupts are used to handle exceptions.
Windows: exception dispatcher creates exception record containing reason
for exception and finds exception handler to deal with it.



/0O device

Wat gebeurt er wanneer je een scanner (voor de eerste keer) aansluit. Vertel ook
wat er gebeurt wanneer een applicatie iets op die scanner wil uitvoeren.

Antwoord

e User process issues system call (with file descriptor and other parameters)
through API.

e Interrupt handler in kernel associates with right interrupt routine.

e Newdevice: dynamicallyload (memory-map) associated device driver from
disk.
Linux: Kernel maintains dynamic tables of all known drivers and provides
set of routines to allow drivers to be added to or removed from these tables
atany time.
Kernel callsmodule’s startup routine onload and calls module’s cleanup rou-
tine before unload.
These are responsible for registering module’s functionality.
Scanner is character device (kernel passes request to device and lets device
deal with request).
Windows: 1/O manager: responsible for managingfile systems, device drivers
and network drivers.
Keeps track of which device drivers loaded and manages I/O buffers.
Controls Windows cache manager which handles I/O caching.
Device drivers arranged in list for each device.
Driver represented in system as driver object.
I/O manager packs requests into I/O request packet (IRP).
Forwards IRP to first driver in targeted I/O stack for processing.

e File descriptorislooked up in device table.
If entry found, port address available. Else, add new entry for device name
with port number it is connected to.

e Kernel I/O subsystem determines whether or not it can already satisfy re-
quest (input available in buffer cache).
IFNOT:

- sends request to device driver, block process if appropriate

- Device driver processes request, issues commands to controller (in-
terrupts), configures controller to block until interrupted



- Device controller monitors device, interrupts when I/O completed

- Interrupthandlerreceivesinterrupt, stores datain device-driver buffer.
If input, signal to unblock device driver.

- Devicedriver determines which I/O completed, indicates state change
to I/O subsystem.

e I/O subsystem transfers data (if appropriate) to process, returns comple-
tion or error code.

e Returnfromsystemcall. I/O completed,input dataavailable touser process,
or output completed.
I/O direction: read-only.

Kernel controls device: scheduling, buffering, caching, spooling, devicereser-
vation, error handling (device driver). Name translation: connection be-
tween hardware devices and symbolic file name.

10



Begrippen verklaren

Verklaar onderstaande begrippen.

Antwoord

Rendez-vous Between sender and receiver when both send () and receive()
are blocking.

Kernel thread Supported and managed directly by the operating system (kernel
level).
Vs. user thread: supported above the kernel and are managed without kernel
support (user level).

Spooling Spool: buffer that holds output for a device that cannot accept inter-
leaved data streams.
Each application’s output is spooled to a separate disk file. Spooling sys-
tem copies queued spoolfilesto printer one byone. Controlinterface allows
user to edit spooling queue (remove, suspend, ...)

Memory-mapped file Partofvirtualaddressspacelogicallyassociated withafile.
Mapping a disk block to a page in memory, after page fault, page-sized por-
tion of file is read from file system into frame.

Practicalvelevance: Subsequentread /writes (not synchronous, hastobe writ-
ten back to disk) handled as routine memory access.

compare_and_swap() Takes3params: value, expected,new_value.
Always returns value of lock. If value == expected, value = new_value.
value isinitialized to o.
First process to execute compare_and_swap () sets value to new_value
(1). This process called compare_and_swap () in a while loop, executing as
long as compare_and_swap() != 0. Second iteration: first process enters
critical section as value was 0. Other processes can’t enter until first pro-
cess sets value of lock back to o.
Each compare_and_swap () is executed atomically (uninterrupted).
Satisfies mutual exclusion requirement, but not bounded waiting.

Scheduling queues Ready, waiting, device, ...

POSIX thread Threadlibrarythatprovidesprogrammerwith APIfor creatingand
managing threads.

TLBhit Apageisfoundinthe TLB (translationlook-aside buffer), whichhas stored
the corresponding physical frame.

11



Practicalvelevance: Address translationis done much faster, as the page doesn’t
have to be looked up in the page table in main memory (which is slower than
the TLB).

Mandatory file locking

Deadlock prevention Preventingdeadlocksfrom happeningbymakingsure one
of the 4 conditions does not hold.
Mutual exclusion: cannot prevent deadlocks by denying mutual-exclusion con-
dition, because some resources are non-sharable.
Hold andwait: whenever processrequestsresource, itdoesnothold any other
resources.
No preemption: if process holding resources and requests another that can-
not be allocated immediately, all resources preempted, process blocked un-
til all requests can be serviced.
ORif process requests resources, check whether available, if they are: allo-
cate, else check whether allocated to other waiting process. If resources nei-
ther available nor held, requesting process must wait. Its resources may be
preempted by requests from other processes. Process restarts when all re-
quests can be serviced.
Circular wait: impose total ordering on resource types, resource requests
onlyin increasing order or enumeration.

Stealth virus Attempts to avoid detection by modifying parts of the system that
could be used to detectit.

Hold and wait When process requests resource, it holds other resources while
waiting on its requested resource.

Security vs protection
Protection refers toamechanism for controlling the access of programs, pro-
cesses, or users to the resources defined by a computer system. The goal is
to ensure that each program component active in a system uses system re-
sources only in ways consistent with stated policies.
Securityis ameasure of confidence that the integrity of a system and its data
will be preserved.

Logischerecordsin eenfile

SSTF (disk scheduling) Shortest-seek-time-firstalgorithmselectstherequestwith
the least seek time from the current head position.
SSTF chooses pending request closest to current head position. (= SJF)
-: starvation, not optimal

12



Naming bij IPC (inter-process-communication) With direct communication,
each process that wants to communicate must explicitly name the recipient
or sender of the communication.

Symmetry: both sender and receiver name the other to communicate.
Asymmetry: only sender names recipient.

Demilitarized zone Firewall: computer, appliance or router in between trused
and untrusted systems.
Implementation: internet = untrusted - semitrusted (demilitarized zone) -
company’s computer. Connections allowed: internet->DMZ and company-
>internet. Not allowed: internet->DMZ or DMZ->company.
Optionally: controlled communication DMZ->company.
DMZ must be attack proof and secure.

Armoredvirus Codedtomakeithardforantivirusresearcherstounravel and un-
derstand.
Canalsobe compressed to avoid detectionand disinfection. Filesfrequently
hidden via file attributes or unviewable file names.

Inverted page table A physical addressis found by usinga processid and offset.
The process id is looked up in the inverted page table, the offset at which it
is stored is the frame number. The frame number and offset are then used to
compute the actual physical address.

Filehandle File name given to entry in open-file table. (= file descriptor)

Symmetric multiprocessing Each processor performs all tasks within the oper-
ating system.
Each processor has its own registers, cache and process queue.

Two-level design bij threading Multiplexes manyuser-level threadstoasmaller
or equal number of kernel threads, but also allows a user-level thread to be
bound to a kernel thread.

External fragmentation Asprocessesareloadedandremoved frommemory,the
free memory space is broken into little pieces.
External fragmentation exists when there is enough total memory space to
satisfy arequest but the available spaces are not contiguous: storage is frag-
mented into a large number of small holes.

Mount table Containsinformationabouteach mounted volume. Associates pre-
fixes of path names with specific device names.

13



SCAN-algoritme bij schijven Disk arm starts at one end of the disk and moves
toward the other end, servicing requests as it reaches each cylinder, until it
gets to the other end of the disk.

At the other end, the direction of head movement is reversed, and servicing
continues. (= elevator)

C-SCAN: when arm reaches end, go back to beginning instead of reversing
direction. Servicing requests that’ve been there longer.

MULTICS ringstructuur bij protection
The protection domains are organized hierarchically into a ring structure.
Eachring (numbered 0-7) corresponds to a single domain, with ring o being
the most privileged one.
Each processisassociated with a current-ring-number.
Aprocesscanonlyaccessthose segmentswitha current-ring-number >=
that of the process.
Domain switching occurs when calling a procedure in a different ring. This
switching is controlled by the following, being included in the ring field of
the segment descriptor:

Access bracket A pair ofintegers, b; and by, such thatb; <= bs.
Limit Aninteger b3 suchthat by >= b,.

List of gates Identifies the entry points (gates) at which the segments may
be called.

When is a call allowed?

e Acalltoaprocedure (segment)isallowedifthe current-ring-number
of the calling process is within the access brackets. The calling process
holdsits initial ring number.

e If current-ring-number < by, callisallowed because we haveatrans-
fer to a ring with fewer privileges. If parameters are passed that refer
to segments in alower ring (segments not accessible to the called pro-
cedure), then these segments must be copied into an area that can be
accessed by the called procedure.

e If current-ring-number > by, callis allowed onlyif bg >=
current-ring-number and the call has been directed to one of the
designated entry points in the list of gates. This allows processes with
limited access rights to call procedures in lower rings that have more
access rights, butin a controlled manner.

Disadvantage: not enforcing need-to-know principle.

14



Polymorfvirus Polymorphic virus changes each time it is installed to avoid de-
tection by antivirus software.
Changes donot affect virus’s functionality, but rather change the virus’s sig-
nature (pattern that can be used to identify a virus, typically series of bytes
that make up virus code).

System call Provide interface to services of OS.
Accessed by programmer through API (system call interface).
Types: process control, file manipulation, device manipulation, information
maintenance, communications and protection.

User mode When OS is executing on behalf of a user application, the system is in
user mode.
Mode bit: added to hardware, indicates current mode.

Kernel mode When user application requests service from OS (via system call),
the system transitions from user to kernel mode to fulfill the request.
Whenever a trap or interrupt occurs, switches to kernel mode. Whenever
the OS gains control of the computer, it is in kernel mode.

OS always switches to user mode before passing control to user application.

Round-Robin scheduling A time quantum is set.
FCFSisapplied, but after each quantum has passed, the CPU is preempted.
The active process becomes last in the ready-queue. The first process in the
queue acquires the CPU.

FCFS scheduling The process that enters the ready-queue first, will be given ac-
cess to the CPU first. Implemented with a FIFO-queue.

Priority scheduling The process with the highest priority becomes first in the
ready-queue.
Can be preemptive or nonpreemptive.

File allocation Allocating space to files so that disk space is utilized effectively
and files can be accessed quickly.
3 major methods:

e contiguous
-: external fragmentation (solution: compaction)
+: easy sequential and direct access

e linked
-: direct-accessinefficient + space required for pointers (solution: clus-
ters) + reliability (solution: doubly linked list)

15



+: no external fragmentation

e indexed
Y

+: efficient direct-access + no external fragmentation

Microkernel Aminimum oftasksisperformedinkernelmode (IPC,memoryman-
agement, CPU scheduling).
Other (system) tasks are performed at the user-level (applications, file sys-
tem, device drivers).

Dynamic linking Load systemlibraries only onceinto memory, multiple processes
use same library on same memory location.
Linking postponed to execution time. Stub included in image for each lib
routine reference. Small piece of code that indicates how to locate appro-
priate memory-resident lib routine or how to load lib if routine not already
present. Stub replaces itself with address of routine and executes it.
Practicalrelevance: Without dynamiclinking, each program mustinclude copy
of its language library in executable.

LOOK scheduling SCAN/C-SCAN: arm moves across full width of disk.
LOOK/C-LOOK: arm moves only as far as the final request in each direction.
(look, because they ‘look’ for a request before continuing)

Need-to-know principle
At any time, a process should be able to access only those resources that it
currently requires to complete its task.
This limits the amount of damage a faulty process can cause in the system.
E.g.: aprocedure is only allowed access to its own variables and the formal
parameters passed to it, a compiler only has access to a well-defined subset
of files (source file, listing file, ...)

Virtual machine Runningan OS asauser level application.

Mailboxen in IPC Withindirect communication, messagesare senttoand received
from mailboxes (or ports).
Objectintowhich messages canbe placed by processes and from which mes-
sages can be removed.
Mailbox has unique id.
Two processes can communicate only if they have a shared mailbox.

16



Translation look-aside buffer (TLB) A piece ofhigh speed memory (faster than
main memory) that stores a certain amount of page numbers with their ac-
cording frame numbers.

Practical relevance: address translation encounters a significant speed-up.

Master file directory (MFD) Indexedbyuser name oraccountnumber,contains
entries that point to each UFD (user file directory).
When auser job starts or auser logs in, MFD is searched for associated UFD.

Sector slipping

Lock-keyscheme Compromise between access lists and capabilitylists.
Each object has list of unique bit patterns, called locks.
Each domain haslist of unique bit patterns, called keys.
Process executing in domain can only access object if domain has key that
matches lock.
Managed by OS.

Transaction A setof operations that performs a specific task.
Many-to-one model Manyuserlevelthreadsare mapped toonekernellevel thread.

Priority interrupts Whenaprocessisexecutingand another processwithahigher
priority is waiting, preempt CPU and assign CPU to higher priority process.

Hierarchical paging The page table itself is paged.
Practical relevance: Decreases weight of page table.

Acyclic Graph Directories Graph with no cycles.
The same file or subdirectory may be in two different directories. Allows di-
rectories to share subdirectories and files.
Any changes by one person are immediately visible to all others in the same
shared directory/file.
Implementation: link (pointer to other file or subdirectory). Name of real
file included in link. Link is resolved when referenced to locate real file.
Issues:

e searching (multiple paths to same file, don’t want to traverse shared
structures more than once)

e deletion (when can the space allocated to a shared file be deallocated
and reused?)
Solutions: remove file whenever anyone deletes it (leaves dangling point-
ers to now nonexistent files), (symbolic links) only remove link, leave

17



links until attempt to use them (illegal access exception), preserve file
until all references are deleted (need to keep count of number of refer-
ences).

e Ensuring there are no cycles.
Solution: general graph directory. Problem: garbage collection.

Replay attack Consists of the malicious or fraudulent repeat of avalid data trans-
mission.
E.g.: repeated request to transfer money.

Logical memory space The memory, as viewed by any application.
Addressesare relative and are translated to a physical address either at com-
pile time, load time or execution time.

Sequential access in memory Information in the file is processed in order, one
record after the other.
Works on sequential-access devices as well as on random-access ones.

Enhanced second-chance algorithm Second chance algorithm: FIFO, but when
page selected, inspect reference bit.
If value == o, proceed replacement, if == 1, give page second chance (clear
reference bit, set arrival time to current time) and move on to select next
FIFO page. Enhanced:
Consider reference and modify bit as ordered pair, 4 classes:

(0, 0) neither recently used nor modified - best to replace

(0, 1) not recently used but modified - not quite as good, because page
needs to be written back to disk before replacement

(1,0) recently used but clean - will probably be used again soon

(1,1) recentlyused and modified - probablywill be used again soon, and
the page will be need to be written back to disk before replacement

We replace first page in lowest nonempty class.
Difference with non-enhanced: preference to modified pages, reduces I/O.

test_and_set () Apointertoalockis passed asa parameter. The passed value
of the lock is returned after the lock is set to true. The test_and_set ()
is called in a while loop, before entering a critical section. If initial value of
lock was false, critical section can be entered as test_and_set () returned
false. When the lock was true, test_and_set () returns true and the
whileloopisexecuted again, critical sectionisnotentered as other processis
in critical section. Each test_and_set () is executed atomically (uninter-
rupted). Satisfies mutual exclusion requirement, but not bounded waiting.

18



Nonpreemptive scheduling Onceaprocessacquiresthe CPU,itisnotinterrupted.
The next process can only acquire the CPU once the previous process ended
and released the CPU.

Circular wait (bij deadlocks) Set of waiting processes exists such that the first
one is waiting for a resource held by the next one (and so on) and the last
one is waiting for a resource held by the first one.

Worst fit Allocate largest hole.
Produces largest leftover hole.
Bad choice, best fit / first fit are better in terms of decreasing storage utiliza-
tion and time.

Absolute pathname Path from the root directory to the specified file, giving the
directory names on the path.
Not relative to the current directory (relative path name).

Certificate authority Digital certificatesare publickeys digitally signed byatrusted
party.
This trusted party receives proof of identification from some entity (certifi-
cate authority) and certifies that the public key belongs to that entity.
Certificate authorities have their public keys included in web browsers be-
fore they are distributed.

Staticlinking Every process hasits own copy of the system libraries.
Syslib treated like any other object module and combined by loader into bi-
nary image.

Page replacement Whenincreasingmultiprogramming, over-allocated memory
(no free frames when page fault occurs).
Swap out process, free all frames, reduce level of MP ~ page replacement.
Need to select victim frame and update associated page and frame tables.
Frame-allocation algorithm and page-replacement.
Page replacement:
FIFO (Belady’s anomaly: page-fault rate mayincrease as the number of allo-
cated frames increases).
Optimal page replacement: LRU.
LRU-approximation: additional-reference-bits, second-chance, enhanced
second-chance.
Additional methods: page-buffering (free-frame pool).

Deadlock criteria Criteria that musthold in order to have a possible deadlock.
Mutual exclusion: at least one resource must be nonsharable.

19



Hold andwait: when processrequestsresource, itholds otherresources while
waiting on its requested resource.

No preemption: resources are not preempted once allocated.

Circularwait: set of waiting processes exists such that the first oneis waiting
foraresource held by the next one (and so on) and the last one is waiting for
aresource held by the first one.

Scheduling criteria Criteria for comparing scheduling algorithms.
CPU utilization: keep CPU as busy as possible.
Throughput: number of processes complete per time unit.
Turnaround time: interval from time of submission to time of completion
(time spent in job queue + ready queue + executing + I/O).
Waiting time: sum of periods spent waiting in ready queue.
Response time: time it takes to start responding, not time it takes to output
respond.

Trap door Hole in the software that only the designer of that program is capable
of using.

File Logical storage unit.

Volume Any entity containing a file system.

20



	Theorie

