Statistical Inference : Examen

18 januari 2018

1 Theory

1.1 Question 1

Let $R(T_n, \theta)$ be risk function.

- 1. Define what is meant by an estimator.
- 2. Let X be a r.v. with density function $f(\cdot;\theta)$. Show that if we consider a continuous prior density then the Bayes estimator is given by

$$T_B = \frac{\int \theta \prod_{i=1}^n f(x_i; \theta) \pi(\theta) d\theta}{\int \prod_{i=1}^n f(x_i; \theta) \pi(\theta) d\theta}.$$

3. Now consider $X \sim Bernoulli(\theta)$ and suppose that the prior density is given by a $Beta(\alpha, \beta)$ distribution. Calculate the Bayes estimator.

1.2 Question 2

- 1. What is meant by a Neyman-Pearson test?
- 2. Define what is meant by a test of size α and show that there always exists such a test of size α .
- 3. Let $X \sim \mathcal{N}(\mu, 4)$. We wish to test

$$H_0: \mu = -1 \text{ versus } H_1: \mu = 1.$$

(a) Consider a critical region of the form

$$R = \{\bar{X}_n > c\}.$$

- i. Determine c such that this test has size α .
- ii. Calculate the probability of a type II error.
- (b) Now consider

$$R = \{\sum_{i=1}^{n} iX_i > a\}.$$

- i. Determine a such that this has size α .
- ii. Calculate the probability of a type II error.
- iii. Compare the probabilities of type II error and comment.

1.3 Question 3

- 1. Describe the Wilcoxon signed-rank test in detail and comment on all assumptions made.
- 2. Assume that there are no ties and calculate the expected value of the estimator for this test.
- 3. Calculate the variance again with the assumption of no ties.
- 4. Describe how your calculations differ when you consider ties.
- 5. If you assume no ties calculate the exact distribution of T^+ for n=4.

2 Exercises

2.1 Question 1

Consider X with cumulative distribution

$$F(x) = P(X \le x) = (1 - e^{-x})^{\frac{1}{\theta}}$$

for $x \ge 0$ and $\theta > 0$.

- 1. Find the cumulative distribution of $W = -\ln(1 e^{-X})$. What is its distribution?
- 2. Find the MLE for θ and derive an asymptotic normality result.
- 3. Find an approximate $100 \times (1 \alpha)\%$ confidence interval. Limit the use of approximations.
- 4. Use the first part of this question to derive an exact confidence interval.
- 5. For $0 \le \beta \le 1$ and calculate the β -th quantile ξ_{β} . Propose an estimator for this quantile and quote an asymptotic normality result.

2.2 Question 2

We have two unknown masses θ_A and θ_B . We measure these with a machine with a measuring error that has expected value 0 and variance σ^2 . We first measure A five times, then B five times and finally A and B five times.

- 1. Formulate a regression model. Explain all the notation you introduce. In the following questions explicitly state all the assumptions you have to make.
- 2. Find a least squared estimator for θ_A and θ_B .
- 3. Calculate the variances of these estimators.
- 4. Explain how you would test if the sum of masses equals 10g.
- 5. Explain how you would test if the masses were equal.
- 6. If we just measured the sum of the masses fifteen times wich of the previous questions would you not be able to answer.