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1 Nuclear Properties

This course will focus on the hyperfine splitting of the energy levels of the atoms,
alone or incorperated in molecules or solids. A thorough understanding of dif-
ferent properties of the atom, and in particular about the nucleus, is therefore
needed. This part will cover a list of certain nuclear properties. The values of dif-
ferent properties can be found at https://www-nds.iaea.org/nuclearmoments/.

1.1 Z, N, and A

These three numbers were probably the first properties you learned about the
nucleus. They are the atomic number, the neutron number, and the mass
number. They represent the amount of protons (Z), the amount of neutrons
(N), and the total amount of nucleons (A) inside the atom. It follows naturally
that Z + N = A. The atomic number uniquely identifies a chemical element.
Whilst the neutron number will have an effect on the mass(number), the shape,
the stability,... of the nucleus. Nuclei with the same atomic number but with a
different amount of neutrons are called isotopes. Nuclei with the same neutron
number but with a different amount of protons are called isotones. This word
was formed by replacing the p (for proton) in isotopes with the letter n (for
neutron). Nuclei with the same mass number are called isobars. A more exotic
term is isodiaphers, which are nuclei with equal neutron excess. The neutron
excess is defined as the amount of neutrons minus the amount of protons. Lastly,
there are isomers. Which are nuclei with same Z and N, but in a different energy
state. Not to be confused with the different energy states of the electron cloud.
When representing nuclei, one uses the short notation such as ”C” for carbon
or ”Fe” for iron. In the top left, the mass number is depicted. If one were to
plot all known nuclei on a N/Z plot, it would look like the figure on the next
page. As the amount of Z grows the amount of N also needs to grow to keep
the nuclei stable. This is needed to overcome the electromagnetic force between
the protons, using the strong force between the nucleons. There are also nuclei
which are more stable than one would expect from a first look. These states can
be explained via the nuclear shell model. Much like the atomic shell model, it
uses the Pauli exclusion principle to order the nucleons and describe the nucleus.
When adding nucleons, there are states with clear jumps and falls in the binding
energy. These number of protons and neutrons are called magic numbers. It
shouldn’t come as a surprise that these numbers are 2, 8, 20... Which are the
same amount of electrons giving full shells. If both the amount protons and
neutrons are magic numbers, one speaks of ”double magic numbers”. As the
total amount of nucleons grows, it becomes harder and harder to find ”stable”
nuclei. It becomes harder to overcome the electromagnetic repulsion. The most
stable nucleus (highest binding energy per nucleon) is Nickel-62. Not to be
confused with Iron-56, which has the lowest mass per nucleon. Therefore, fission
of elements heavier than Nickel-62 will release energy, whilst one needs fusion of
elements lighter than Nickel-62 to release energy. In nature, only elements up
to Uranium are found. The lightest elements were created during the Big Bang
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and the following Big Bang nucleosynthesis. Heavier elements (up to Nickel)
can be created via fusion during the latest stages of stars, when the pressure
(due to gravity) is high enough to let said fusion take place. Heavier elements
are created during events such as supernovae.

Figure 1: Plot of all known nuclei. N i.f.o. Z.
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1.2 Mass

The mass of a proton, as wall as a neutron, is about 1 GeV1. The mass of
a nucleus is not simply the sum of all nucleon masses. When nucleons come
together to form a nucleus, some mass is lost as ”binding energy”. As discussed
before, this binding energy can serve as a measure for how tight the nucleons
hold together. To correct for the amount of nucleons, the binding energy is
often expressed as binding energy per nucleon. The mass of a nucleus is also
often expressed in a.m.u.’s, which is the same as 1 gram per mole. Which is, by
definition, 1/12th of the mass of a Carbon-12 atom2, or 1.66 · 10−27kg.

1.3 Lifetime

Not all nuclei are stable. Some can decay to other nuclei (or pairs of nuclei).
The lifetime can range from yoctoseconds to infinity. But more typical values
are femtoseconds to 1010 seconds. The experimentally verified lifetime of the
proton (Hydrogen nucleus) is, as for now, longer than the age of the universe. It
is therefore accepted to be a stable particle. This is needed to conserve baryon
number. Some new physics theorems propose proton decay and therefore vio-
lation of baryon number. This violation is needed to explain e.g. the matter
anti-matter discrepancy in the universe. Observing the decay of a proton would
therefore have interesting consequences in our understanding of the universe.

There are different kinds of decay. For example: a neutron can decay to a
proton and an electron (and an anti-electronneutrino). Therefore shifting to
Z+1 and N-1. This is called beta decay. A proton can decay to a neutron, a
positron (and an electronneutrino). This process is called inverse beta decay.
This can not be confused with ”pure” proton decay. An isolated proton can not
decay (as far as we have observed). But when inside a nucleus, the daughter
nucleus can have a greater binding energy, therefore allowing said decay. A pro-
ton can also absorb an electron, creating a neutron (and an electronneutrino).
Therefore shifting to Z-1 and N+1. When this happens, we talk about electron
capture. A nucleus can emit an entire Helium nucleus, this is called alpha-decay
(and the Helium nucleus an alpha particle). A nucleus can also break apart in
other pairs of nuclei, this is certainly true for really heavy elements. Lastly, the
internal distribution of protons and neutrons can change, resulting in a config-
uration with exactly the same particles, yet with a lower overall energy (i.e. a
lower energy level). With this process, photons (gamma-rays) are emitted.

1In nuclear physics, as well as particle physics, mass is oftentimes expressed in terms of
energy. Which can be found via Einstein’s energy-mass relation.

2Therefore, the masses of the electrons are included.
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1.4 Size

The size of a nucleus is in the order of femtometre. Where the proton has
a diameter of 1.6 fm, while more heavier atoms such as uranium can have a
diameter of 15 fm. The radius (and therefore the diameter) is often defined as
the rms (root-mean-square) of the radius.

1.5 Spin and Parity

Two other properties are the spin and parity of a nucleus. The parity is ei-
ther even or odd. It is a rather quantum mechanical property. When the wave
function of the nucleus changes sign upon spatial coordinates reflection, one
has odd parity. When the sign stays the same, one has even parity. When
representing parity, ”+” is used for even parity and ”-” for odd parity. A nu-
cleus (in its ground state or excited) always has a well defined parity. This is
also true for the parity of the entire wave function of an atom. A well defined
parity of a quantum system is not something one usually has. More infor-
mation regarding the parity of nuclei and atoms can be found at section 5 of
https://en.wikipedia.org/wiki/Parity (physics).

The spin of a nucleus is the resulting effect of the alignment of the spins of
the nucleons, and how they orbit around each other. A single proton or neutron
has spin 1/2. When combining nucleons into a nuclei, these nucleons will pair
together following the shell model. A ground level nucleus with 2 protons and
2 neutrons and no orbital momentum will have spin 0. As the two protons and
the two neutrons will be paired up, thus each pair having zero spin. When we
only have one proton and one neutron, they will not pair together (we fill the
shells separate for protons and neutrons). Thus resulting in a spin 1 particle if
the orbital momentum is zero. For ground level nuclei and no orbital momen-
tum, the spins can only be 0, 1/2, or 1. Corresponding to all paired nucleons, 1
unpaired nucleon, or both protons and neutrons being unpaired. When exciting
the nucleons, much as in the atomic shell model, more unaligned spins are pos-
sible. Therefore resulting in higher nuclear spins. Gaining orbital momentum
between the nucleons will also result in a higher nuclear spin. The spin can
easily go up to spin 10.

1.6 Deformation Parameter and Magnetic Moment

These are the two new properties which will get much attention in this course.
As they are directly related to the hyperfine splitting. The magnetic moment
arises from the spin of the nuclei and is often expressed in nuclear magneton
units = eh̄

2mp
= 5.05 · 10−27J/T . The value in this unit can range from 0 to

about 10. The deformation parameter is used to describe the deviation from
spherical symmetry. It is often denoted as β2 and is directly linked to the
electric quadrupole moment. It has unit of Coulomb times square meter, and is
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often denoted in units e · 10−24cm2. This last surface value is called a ”barn”,
therefore the quadrupole moment is often written as ”eb” for electron-barn,
sometimes even shortened to simply ”b”. The value in this unit can range from
0 to about 5, but has been measured as high as 8 (for Lutetium-176). A broader
description and use of these parameters will follow in the course of this course.

2 Multipole Moments

2.1 mathematical description

When describing the orbit of a satellite around the Earth, we concentrate all
the mass of the sphere inside the centre of the Earth. This gives quite decent
solutions within a certain precision, due to the Earth being sort off equal to
a sphere3. Treating the Earth as a point like particle is the same as treating
it as a ”gravitational monopole”. If one would take said assumed perfectly
round Earth and stretch it along one axis, one would need more information to
accurately describe the mass distribution. One could introduce a dipole term to
accomplish that. The more we deform said distribution of mass, the more terms
one would need to describe the mass distribution up to a (self) desired precision.
This is precisely how a multipole expansion works. You take a random general
distribution of mass or charge, and calculated the multipole terms needed for
your calculations, as illustrated in the image below.

Figure 2: Visual representation of a multipole expansion of a random charge
distribution.

3For a perfect spheroidal Earth, concentrating all the mass within a point would no longer
be an approximation, but would give an exact solution.
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If the distribution is really far away or rather spherical symmetric, you might
only need the monopole term. If you want more precision on the forces and
energy effects, you need a more precise description of the distribution, thus
needing more multipole terms.

We all know an electric monopole. The electron, for example, is an electric
monopole. A dipole is two monopoles with opposite charge, separated by a
certain distance. A quadrupole is two dipoles seperated by a certain distance,
and so forth. It is clear that the higher order terms consist of more and more
charges, thus closer mimicking the original charge distribution. We will list the
first 3 multipole moments: what they are, and how to calculate them.

• The monopole term. This is just one charge. It will translate itself math-
ematically to the total charge of the distribution, therefore a scalar4. It is
the same as treating a planet as a point mass. With the change that we
can also have negative charges (and no negative masses). Translating this
to a formula gives us for a continuous distribution:

Q =

∫
ρ(r′)dr′

And for a discrete distribution:

Q =

i=N∑
i=1

qi

• The dipole term. This is no longer a scalar, but a vector5. It has three
components k = x, y, z. One for each spatial coordinate. We will need to
multiply each charge with the spatial coordinate of said charge. Translat-
ing this to a formula gives us for a continuous distribution for one of the
three components:

Qk =

∫
r′kρ(r′)dr′

And for a discrete distribution:

Qk =

i=N∑
i=1

qidik

• The quadrupole term. This component has 9 terms, corresponding to
all possible matches between x, y, z and x, y, z. This term can not be
represented by a vector but needs a 3x3 traceless symmetric matrix. Or,
in other words, a tensor of rank two. Again, we let k range from x to y
to z. The same goes for l. These formulas may seem rather ad hoc, but

4This is the same as a rank-0 tensor.
5This is the same as a rank-1 tensor.
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they are rather difficult to derive purely from searching for a mathematical
analogue to the physical representation. It is best to accept them at face
value and try to understand them. The symbol δkl is called a ”Kronecker
delta”. It is zero when k 6= l and 1 when k = l. Due to the fact that
it is a traceless symmetric matrix, one can check your answers, making
sure Qxx + Qyy + Qzz = 0 and Qkl = Qlk for all k’s and l’s. Translating
this to a formula gives us for a continuous distribution for one of the nine
components:

Qkl =

∫
(3r′kr

′
l − r′2δkl)ρ(r′)dr′

And for a discrete distribution:

Qkl =

i=N∑
i=1

(3dikdil − ||di||2δkl)qi

Higher order formulas will not be given but can be found via the general
expression in spherical coordinates:

f(θ, φ) =

∞∑
0

m=l∑
m=−l

Cm
l Y

m
l (θ, φ)

Where the Y m
l (θ, φ)’s are the standard spherical harmonics, and the Cm

l ’s are
coefficients which depend on the function.
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2.2 The Nucleus

Let us now apply this knowledge to the nucleus. The electric monopole term of
the nucleus will simply be the charge of the nucleus. Representing the nucleus
as a point charge. This is the representation that we are used to. When deal-
ing with hyperfine interactions, we no longer represent the nucleus as a point
charge, but as an object with a shape and size. Higher order multipole terms are
therefore needed. As seen in the course video ”Why are odd electric moments
zero?”, the electric dipole moment does not exist. The electric quadrupole term
represents, as discussed before, the deviation from spherical symmetry. You
will find the electric quadrupole term as a single number β2

6. However, in the
future we will see that there will be no contradiction between using this one
number, or the 5 components in the rank-2 tensor. Higher terms such as the
hexadecapole will be labeled as β4. It is important to note that the multipole
expansion only gives info about the shape of the distribution, not the size of the
distribution. For the size, we have the rms of the radius.

The electric quadrupole moment is large when the nucleus is heavy, and when
the nucleus is strongly deformed. Explained by needing higher order multipole
terms to accurately describe said type of nuclei. The rms of r increases as well
with increasing mass.

Until now, we used the multipole expansion to describe a static charge dis-
tribution, the same can be done for a static current distribution. The words
”static” and ”current” might seem as an oxymoron, but just imagine an electron
revolving around the same point in space indefinitely. The electron is moving,
but the current (the electronloop) stays in the same position. Regarding mag-
netic multipole terms, the opposite for electric multipole terms is true. The
odd terms survive while the even terms vanish. This represents itself e.g. into
a magnet splitting into two other magnets when breaking in two. Instead of
splitting into a monopole magnetic southpole and a monopole magnetic north-
pole7. The first non-zero term therefore is the magnetic dipole moment. The
second non-zero term is the magnetic octopole moment. Which is often more
than we need for our hyperfine interactions, but can be used to further accu-
rately describe the energy levels. As said before, the magnetic dipole moment is
represented by one number, often in terms of nuclear magnetons. This number
is the magnitude of the dipole vector.

6It is now clear what this two represents, it is the ”second” multipole term. Zero being the
monopole term.

7Magnetic monopoles are predicted in new advanced theories within particle physics, there
is ongoing search for them. So far, none have been found.
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2.3 Multipole Radiation

This section will be rather short, as a more in-depth description of the video
would soon derail too much.

Classical multipole radiation is created when an oscillating charge distribution
is present. To be clear, it is the position of the charges that oscillate, not the
charges itself. This would break charge conservation, and one would rather not
like breaking physics. The gravitational equivalence of multipole (EM) radia-
tion, are gravitational waves. Just as in gravitational waves, energy is lost from
the system when multipole radiation is created. One needs to fed the system
energy to let it oscillate and create multipole radiation. An oscillating multipole
can therefore not be used to represent a decaying nucleus emitting radiation,
as a nucleus is not powered. A nucleus is not an oscillating multipole moment,
yet it can still emit multipole radiation. How does this work? Each exited state
of the same nucleus can be represented via a multipole expansion, unique to
each state. When the nucleus decays, it changes from one multipole to another
multipole. This transition between multipoles will be the multipole radiation,
and can be unshockingly expressed as a multipole expansion. It is important to
note that the nucleus is not allowed to have e.g. an electric dipole moment, but
the transition expansion can perfectly have said moment.
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1 VIP-1

This section will deal with the logical build up of VIP-1. It will cover the same
”ladder” model the video has, but each step will be explained more in details.
We will start from how we used to describe basic atoms. Then work our way
down from high energy level splitting (excited nuclei), to the energy levels of the
excited electrons, to the L-S coupling (fine splitting), all the way to hyperfine
splitting.

1.1 Approximations of Basic Nuclei

To describe the H (or even the He atom) we made some basic approximations
to make the calculations feasible, these approximations were will be described
in short.

1.1.1 Non-relativistic

The non-relativistic quantum mechanical equation for the hydrogen atom (and
for any other quantum system) is the Schrödinger equation. Its relativistic
analogue is the Dirac equation. To first order in v2/c2, the Dirac equation can
be approximated by the Schrödinger equation plus three extra terms. Those
terms represent the most important relativistic effects. They are:

• The mass-velocity effect. The dependence of the electron mass on the
electron velocity causes altered orbits for high-speed electrons (= the ones
closest to the nucleus).

• The Darwin effect. In relativistic quantum physics, the electron can be
shown to execute extremely fast random movements over a short length
scale, known as the zitterbewegung 1. Therefore, the electron experiences
the Coulomb potential by the nucleus as somewhat smeared out, which
slightly changes the energy levels of the hydrogen and other atoms.

• Spin-orbit coupling. The orbit of an electron (and hence the energy of both
the electron and the atom) does not depend only on the electromagnetic
interaction of its charge with the charge of the nucleus, but also on its spin:
the electron’s orbital motion generates a magnetic field, that interacts
with its spin magnetic moment. This interaction between spin and orbit
is called spin-orbit coupling. Because spin-orbit coupling – and therefore
spin – naturally shows up in the Dirac theory, spin can be understood as
being a relativistic effect.

1This should not be confused with one of the Heisenberg uncertainty principles, which is
present already in non-relativistic quantum physics.
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1.1.2 Effective Electron-Electron Interactions

When having multiple electrons, solving the electron-electron interactions is ex-
ceedingly difficult. Solving the Hamiltonian directly (by expanding the many-
electron wave function into a linear combination of Slater determinants) becomes
unfeasible as one needs many Slater determinants when the amount of electrons
grows and one wants a reasonable accurate solution.

A solution to this is identifying a subspace of the full Hilbert space in which the
e-e interactions plays a decisive role. The e-e interaction is then treated explic-
itly within this limited subspace, while the influence of the rest of the Hilbert
space is treated via a mean-field approximation. This greatly reduces the inter-
action terms as we let the prominent interactions happen in small spaces.

This process of describing the e-e interactions as prominent in certain subspaces
(and the rest of the space via a mean-field) is what effective electron-electron
interactions are comprised off.

1.1.3 Infinitely Heavy Nucleus

When the nucleus is not infinitely massive any more, electron and nucleus will
move about their common centre of mass which lies close to the nucleus2. The
orbit of the electron (therefore also its energy)will slightly change. Energies cor-
rected for this effect are obtained by multiplying the results from the infinitely
massive proton by a factor 1

1+ me
M

(M is the mass of the nucleus) . This increases

the ground state energy of H by 0.008 eV. For Deuterium (‘heavy Hydrogen’,
with a nucleus of 1 proton and 1 neutron) this formula tells its ground state is
0.004 eV lower than the H ground state. For really heavy nuclei where M is
high, the effect of this approximation becomes progressively small.

In contrast to this classical mass effect, a second correction due to finite mass
is of a purely quantumphysical origin: the zero-point motion of light objects.
A quantummechanical object can never be at rest, even not at 0 K and in its
absolute ground state. Always there will be a random vibration about its rest
position, a phenomenon that is called zero-point motion and can be understood
as a consequence of the uncertainty principle. The lighter the object, the more
important the zero-point motion. Nuclei are usually sufficiently heavy to make
this zero-point motion negligibly small, but for the lightest nuclei it can become
significant.

2The proton-to-electron mass ratio is about 1836.
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1.1.4 Point Nucleus

The fourth approximation we will discuss is the assumption that the nucleus
has no structure. What do we mean by this? In the first place that all protons
and neutrons in the nucleus coincide with the same mathematical point. If this
is not the case - imagine a spherical, cigar-shaped or even more complex nucleus
- the Coulomb potential due to the nucleus will not be spherically symmetric
any more. This will result in other solutions and therefore energy levels of our
Hamiltonian.

The same happens if the nucleus has structure in a magnetic sense: it can
have a magnetic dipole moment (or even a higher order multipole moment).
Because of the dipole moment the nucleus will generate a magnetic field, and
this breaks the spherical symmetry and hence leads to preferred orientations of
the electrons.

And now we have finally arrived at the subject of this course: the role of the
structure of the nucleus, in its spatial and magnetic sense. As we will calculate
later, the new influence of the nucleus we take now into account will introduce
new shifts and splittings of the order of µeV. Because the energy scale which is
needed to describe these new splittings is orders of magnitude smaller than the
energy scale for the fine structure, the new details in the atomic spectrum are
called the hyperfine structure of the atom.

Figure 1: VIP number one. It shows the different energy levels and splittings
of an atom.

4



1.2 The Energy Levels

While reading this section, keep an eye on Fig. 1 p.4. We will constantly be
referencing the energy levels on this picture while describing every part of said
image. The energy levels on the left are all possible energy levels of the ”nucleus
+ electrons” system. The sections below describe the different attributions to
said energy levels. Unfortunately it is not possible to ”see” all different energy
levels on said energy scale. That’s why we zoom in where needed in the centre
and on the right side of the image.

1.2.1 Nucleus Excitations

As described in the previous chapter, a nucleus can get excited when the internal
distribution of protons and neutrons change. This results in a configuration with
exactly the same particles, yet with a higher overall energy (i.e. a higher energy
level). These configurations are the most left energy levels I1, I2,... This can
be done via absorbing a photon in the keV/MeV energy range. Or when a
nucleus decays to another nucleus, which can be not yet in its ground state
after decaying. As seen via the energy of the photons, the difference in energies
are of order keV/MeV.

1.2.2 Electron Excitations

In the Rutherford-Bohr model, electrons orbit the nucleus in well defined orbits.
These well defined orbits have well defined energy levels, which are quantized,
as seen on the second energy splitting (counting from the left). The difference
in energy values are of order eV. It therefore also takes photons in the order of
eV to excite electrons to higher orbits.

1.2.3 Spin-Orbit Coupling (fine splitting)

This is where the energy splitting starts to get more complicated. The spin-
orbit coupling is a weak magnetic interaction (coupling) between the electron
spin and its orbital motion. The intrinsic spin of the electron creates a spin
magnetic dipole moment. While, from the restframe of the electron, the rotating
nucleus creates a magnetic field. This is why it is called a relativistic effect,
it arises from putting ourselves at the position of a stationary electron and
moving nucleus. For light atoms, the individual spins si will interact with
each other to form a total spin angular momentum S. Likewise, the individual
orbital angular momentum li form a total orbital angular momentum L. These
quantum numbers S and L interact with each other via what is called Russell-
Saunders coupling (or simply LS coupling). The S and L couple together and
form a total angular momentum J = L + S. This value depends on the relative
orientation between L and S. Just as how the energy of a system is different
between different orientations of a bar magnet in a magnetic field, the energy
correction is different for different values of J as illustrated in the figure on the
next page.
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Figure 2: Coupling of different L and S into different J, and its effect on the
energy splitting.

On the left, two different relative orientations are shown, each resulting in a
different J. These different values result in different energy splitting of order of
meV.

There is a way of characterizing different states, this is done via the term sym-
bols. A term symbol is defined via 2S+1LJ . For same values of S and L, different
orientations (and therefore different values of J) are possible. J ranges from L+S
to |L-S| in steps of -1. When filling in L, we use the symbols S, P, D, F, G, H,...
instead of 0, 1, 2,...

As stated before, different orientations will result in different energy levels.
To know the relative orientation of the energy levels, we can use Hund’s rules.
They say the following:

• The highest multiplicity (defined as 2S+1) has the lowest energy.

• For the same multiplicity, the largest L has the lowest energy.

• For the same L and half filled or less filled shells, the lowest J has the
lowest energy. For the same L and more than half filled shells, the highest
J as the lowest energy.

When talking about shells, we of course mean the outer most shell. As electrons
of filled shells balance each other in si and li, therefore creating S = L = 0 and
by extend J = 0.

Take, for example, Sodium. It has a filled s and p shell, and one electron
in the 2s shell. This gives us the term 2S1/2. When exciting this electron to the
2p shell, we have two possible terms. 2P1/2 and 2P3/2 (via S = 1/2, the same as
before, and L now = 1). Where Hund’s rules dictate that E(2P3/2) > E(2P1/2).
This fine splitting of energy levels is something one can see when looking at the
spectrum of a Sodium lamp. An orange doublet can be seen at wavelengths of
589.6 nm and 589.0 nm.
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1.2.4 Hyperfine Splitting

Two different hyperfine splittings can be identified. The electric hyperfine split-
ting and the magnetic hyperfine splitting. The following two sections will be
rather short, as they both get their own chapter where they will be broadly
discussed.

The electric hyperfine splitting has to do with the interaction of the nuclear
quadrupole moment and the electric-field gradient (of the electron cloud). The
electric-field gradient measures the change of the electric field at the nucleus
generated by the electronic charge distribution. We will see later that this can
be described as a coupling between the two parameters (here tensors of rank 2)
and this will give an energy splitting (in the order of µeV).

The magnetic hyperfine splitting has to do with the interaction of the nucleur
dipole moment and the magnetic hyperfine field. We have seen such a magnetic
field before, it is the magnetic field associated with the total angular momen-
tum J. The coupling betwheen these two parameters (both vectors) will give
our energy splitting (again in the order of µeV).

Figure 3: Illustration of the different terms in the electric hyperfine splitting.

Figure 4: Illustration of the different terms in the magnetic hyperfine splitting.
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2 Gravitational Analogue

This section extensively discusses a problem from classical mechanics. We will
highly benefit from this when discussing the quantum multipole expansion and
the quadrupole term where very similar reasonings appear. The full mathemat-
ics will be developed only once here, where we can profit from the absence of
quantum mechanics, which could possibly distract us. In the later parts about
the multipole expansion and the quadrupole term we will just have to copy the
results, and concentrate on the interpretation. Sometimes notation becomes
weird in this chapter. We prefer however to give the mathematical objects very
explicit names, to point out the often subtle differences between them and hence
avoid misconceptions.

2.1 Two Mass Distributions: Multipole Expansion

Take a look at the image bellow. How can we find the potential energy Epot of
said static system of two bodies M1 and M2 in situation 1? Where both masses
are in each others gravitational fields, with their center of mass separated by a
vector ~r0.

Figure 5: Three situations of two mass distributions interacting via gravitation.
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We use the following notation: Mi is the name of the body, mi its total mass,
and ρi(~ri) is its mass density distribution function. Our reference frame XYZ
will have its centre in the barycentre of M1

3. In general, both mass distribu-
tions are inhomogeneous and have an irregular shape. Because potential energy
is defined only apart from an additive constant, we make the usual convention
that Epot vanishes if the two masses are at an infinite distance from each other.

We can choose to calculate either the potential energy of M2 in the field of
M1, or vice-versa. Choosing the latter possibility, we can write:

Epot =

∫
1

ρ1(~r1)V2(~r1) d~r1 (1)

The integral is taken over the volume occupied by M1, or over all space. The
potential V2 of M2 at ~r1 can be written as:

V2(~r1) = −G
∫

2

ρ2(~r2)

|~r2 − ~r1|
d~r2 (2)

which leads to the following expression for the potential energy:

Epot = −G
∫

1

∫
2

ρ1(~r1)ρ2(~r2)

|~r2 − ~r1|
d~r1 d~r2 (3)

Due to the possibly irregular shapes (as will be in most general cases) of both
mass distributions, the integrals in equations 1 to 3 can be hard to calculate. In
order to be able to deal with simpler integrals and in order to gain simultaneously
physical insight, we will make a series expansion of equation 3 using the so-called
Laplace expansion or multipole expansion in spherical coordinates4

1

|~r2 − ~r1|
= 4π

∑
n,q

rn<
rn+1
>

1

2n+ 1
Y n∗q (θ1, φ1)Y nq (θ2, φ2) (4)

with r< = min (r1, r2) and r> = max (r1, r2). The potential energy of equa-
tion 3 then becomes:

Epot = −4πG

∫
1

∫
2

ρ1(~r1)ρ2(~r2)

(∑
n,q

rn<
rn+1
>

1

2n+ 1
Y n∗q (θ1, φ1)Y nq (θ2, φ2)

)
d~r1 d~r2

(5)

3Any other centre will yield the same mathematics, but using this condition makes further
calculations a lot easier.

4The Condon-Shortley phase convention for the spherical harmonics is used, see
http://mathworld.wolfram.com/Condon-ShortleyPhase.html
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In general, this is still a sum of very complicated integrals, as we cannot separate
the integration over ~r1 and ~r2. However, if the two bodies are such that any r1

is smaller then any r2
5, the separation can be made and we obtain:

Epot =
∑
n,q

Qn∗q V nq (6)

with

Qnq =

√
4π

2n+ 1

∫
1

ρ1(~r1) rn1 Y
n
q (θ1, φ1) d~r1 (7)

and

V nq = −G
√

4π

2n+ 1

∫
2

ρ2(~r2)

rn+1
2

Y nq (θ2, φ2) d~r2 (8)

The Q-tensors have units kg mn, the V-tensors N/(kg mn−1) and their products
Nm or J. It is important to realize that the summation is a dot product between
two spherical tensors (a different prefactor can occur if the dot product is taken
between cartesian tensors).

2.2 The monopole term (n=0)

The monopole term can be read as a dot product between two tensors of rank 0
(scalars): the monopole moment Q0

0 due to M1 (units: kg), and the monopole
field V 0

0 due to M2 (units: Nm/kg). Explicit expressions are:

Q0
0 = m1 (9)

V 0
0 = −G

∫
ρ2(~r2)

|~r2|
d~r2 (10)

E
(0)
pot = Q0∗

0 V
0
0 (11)

The monopole field is nothing else than the gravitational potential at the origin
(where the barycentre of M1 is) due to M2, while the monopole moment is the
total mass m1 of M1. The monopole contribution to the potential energy would
be the only and exact contribution to the potential energy in the case where M1

would be a point mass, situated at the origin.

5This excludes a) bodies that overlap (not possible for masses, but possible for charges:
e.g. s-electron penetration in the nucleus), and b) a body with a hole in which a bulge on the
other body enters.

10



2.3 The dipole term (n=1)

The dipole term can be read as a dot product between two tensors of rank 1
(vectors): the dipole moment Q1

q due to M1 (units: kg m), and the dipole field
V 1
q due to M2 (units: N/kg). Explicit expressions are:

Q1
q =

√
4π

3

∫
1

ρ1(~r1) r1 Y
1
q (θ1, φ1) d~r1 (12)

V 1
q = −G

√
4π

3

∫
2

ρ2(~r2)

r2
2

Y 1
q (θ2, φ2) d~r2 (13)

E
(1)
pot =

∑
q=−1,0,1

Q1∗
q V

1
q (14)

We can transform the dipole moment into 3 components of a cartesian vector,
which will be more easily interpretable:

Qx =

√
2

2

(
Q1
−1 −Q1

+1

)
(15)

=

∫
1

ρ1(~r1) r1 sin θ cosφd~r1 (16)

=

∫
1

ρ1(~r1)x1 d~r1 (17)

Qy =

∫
1

ρ1(~r1) y1 d~r1 (18)

Qz =

∫
1

ρ1(~r1) z1 d~r1 (19)

One recognizes the definition of the position vector of the center of mass of M1,
multiplied by the total mass m1. As we have chosen the origin of the axis system
in the center of mass, we can conclude that the three components of the dipole
moment are zero, both in the cartesian and in the spherical form.

In a similar way, the following cartesian components are found for the dipole
field:

Vx = −G
∫

2

ρ2(~r2)

|r2|3
x2 d~r2 (20)

Vy = −G
∫

2

ρ2(~r2)

|r2|3
y2 d~r2 (21)

Vz = −G
∫

2

ρ2(~r2)

|r2|3
z2 d~r2 (22)
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One recognizes now that the dipole field vector is the opposite of the gravita-
tional field due to M2 at the origin6.

2.4 The quadrupole term (n=2)

The quadrupole term can be read as a dot product between two tensors of rank
2: the quadrupole moment Q2

q due to M1 (units: kg m2), and the quadrupole
field V 2

q due to M2 (units: N/(kg m)). Explicit expressions are:

Q2
q =

√
4π

5

∫
1

ρ1(~r1) r2
1 Y

2
q (θ1, φ1) d~r1 (24)

V 2
q = −G

√
4π

5

∫
2

ρ2(~r2)

r3
2

Y 2
q (θ2, φ2) d~r2 (25)

E
(2)
pot =

∑
q=−2,...,2

Q2∗
q V

2
q (26)

Being given a spherical tensor field of rank 2, the corresponding 6 components
of its cartesian form (only 5 of them are independent) are found by:

a11 =

√
6

2

(
a2

2 + a2
−2

)
− a2

0

a22 = −
√

6

2

(
a2

2 + a2
−2

)
− a2

0

a33 = 2a2
0 (27)

a12 = −
√

6

2
i
(
a2

2 − a2
−2

)
a13 = −

√
6

2

(
a2

1 − a2
−1

)
a23 =

√
6

2
i
(
a2

1 + a2
−1

)
(28)

The quadrupole moment tensor can be transformed in its cartesian form: a
traceless, symmetric matrix:

cQ
(2)
sh =

∫
1

ρ1(~r1)

 3x2
1 − r2

1 3x1y1 3x1z1

3x1y1 3y2
1 − r2

1 3y1z1

3x1z1 3y1z1 3z2
1 − r2

1

 d~r1 (29)

6 ~E2(~0) = −~∇V2(~0), with V2 given by equation 2. This results in:

~E2(~0) = G

∫
2

ρ2(~r2)

|r2|3
~r2 d~r2 (23)
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It is understood that the integration over ~r1 is performed for all of the 9 elements.
The physical interpretation of the quadrupole moment tensor is as follows: its
ith diagonal element will be positive if along the ith axis of the reference frame
the actual radius of M1 is larger than the radius of the best-approximating
sphere. In this situation M1 is said to be prolate along this axis. In the inverse
case, M1 is oblate along this axis (see example in Fig. 6). For a perfect sphere,
this tensor is zero.

Figure 6: A spherical, prolate and oblate mass distribution (with
respect to the z-axis).

The same transformation (using equation 27) can be done for the quadrupole
field:

cV
(2)
sh = −G

∫
2

ρ2(~r2)

|~r2|5

 3x2
2 − r2

2 3x2y2 3x2z2

3x2y2 3y2
2 − r2

2 3y2z2

3x2z2 3y2z2 3z2
2 − r2

2

 d~r2 (30)

Note that the structure of this quadrupole field tensor is definitely different from
the quadrupole moment tensor, due to the factor 1/ |~r2|5.

How to interpret the meaning of this tensor? Let us take the negative gra-
dient of the x-component of the gravitational field:

−∇E2x(~0) =

(
−∂E2x(~0)

∂x1
, −∂E2x(~0)

∂y1
, −∂E2x(~0)

∂z1

)
(31)

=

(
∂2V2(~0)

∂x2
1

,
∂2V2(~0)

∂y1∂x1
,
∂2V2(~0)

∂z1∂x1

)
(32)
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Repeating this for the y- and z-components of the gravitational field leads to 9
quantities which can be arranged in a symmetric matrix:

∂2V2(~0)
∂x2

1

∂2V2(~0)
∂y1∂x1

∂2V2(~0)
∂z1∂x1

∂2V2(~0)
∂x1∂y1

∂2V2(~0)
∂y21

∂2V2(~0)
∂z1∂y1

∂2V2(~0)
∂x1∂z1

∂2f(~0)
∂y1∂z1

∂2V2(~0)
∂z21

 (33)

This matrix is also trace-less. Indeed, its trace is the Laplacian of the potential
due to M2, evaluated at the origin:

∆V2(~0) =
∂2V2(~0)

∂x2
+
∂2V2(~0)

∂y2
+
∂2V2(~0)

∂z2
= 4πGρ2(~0) (34)

By the Poisson equation, this Laplacian can be related to ρ2(~0), the mass density
of M2 at the origin. By our restriction that ~r1 < ~r2, ρ2(~0) must necessarily be
zero, and the above matrix is trace-less. You can verify now that:

Vij =
∂2V2(~0)

∂x1i∂x1j
(35)

= −G
∫

2

ρ2(~r2)

|~r2|5
(3x2ix2j − r2

2δij) d~r2 (36)

which are exactly the 9 components of the cartesian form of the quadrupole field
given in equation 30. Looking at equations 31 and 33, we can therefore interpret
the quadrupole field tensor as the negative gradient of the gravitational field at
the origin due to M2. Therefore the quadrupole field tensor is often called the
(gravitational-) field gradient tensor. Its ijth element expresses how strongly
the i-component of the gravitational field at the origin varies if one goes along
the j-direction.

2.5 Correction to Multipole Expansion.

By assuming r1 < r2 in the Laplace expansion, we made an error for those
mass distributions where this condition is not fulfilled. Often this error will
be small, but in the case of overlapping charge distributions as we will meet
them in the following chapters, it will produce nevertheless measurable effects.
The necessary corrections can be expressed as corrections to each of the mul-
tipole terms separately, but the correction to the monopole term is the most
important one. In order to find this correction, we will take the opportunity
to use the multipole expansion in cartesian coordinates rather than the Laplace
expansion, which sheds a different light on the problem we have just solved
in spherical coordinates. The full solution using spherical coordinates involves
Tesseral harmonics, and can be found at many places.
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We start again from equation 3. In order to avoid the complicated integral in
this expression, we make a Taylor expansion of V2 around the origin of the axis
system. Such a Taylor expansion converges rapidly if the points ~r1 at which we
need the value of V2 are much closer to the origin than the major part of the
mass of M2 is. We assume that this is the case7, and will truncate the series
after the second order term. On how to expand a potential, consider a function

f(~r) =

∫
g(~rv)

|~rv − ~r|
d~rv (37)

The integral runs over that part of space where g(~rv) is not zero, which might
be a finite or infinite region. If g is a charge or mass distribution, f gives the
electric or gravitational potential in a point ~r (apart from an appropriate factor).
That point can be either inside or outside the non-zero region of g. If it lies
inside, the denominator in the integral becomes zero and we have to care about
the convergence of the integral. The latter is determined by the properties of g.
We assume that we know the value of f and of all its derivatives at the origin
~0. What we want to know is the value of f at points ~r = (x, y, z) that are
not far away from ~0. This means we need a Taylor expansion of f(~r) around ~0.
The general form of a Taylor expansion around ~0 for a function with vectors as
argument, is:

f(~0 + ~r) =

∞∑
j=0

[
1

j!

(
~r · ~∇~r ′

)j
f(~r ′)

]
~r ′=~0

(38)

Explicitly for our case, this gives for the zeroth order term:

E
(0)
pot =

(∫
ρ1(~r1) d~r1

)
V2(~0) (39)

= m1 V2(~0) (40)

= m1

(
−G

∫
ρ2(~r2)

|~r2|
d~r2

)
(41)

= Q0
0V

0
0 (42)

= sQ
(0)
sh · sV

(0)
sh = cQ

(0)
sh · cV

(0)
sh (43)

In equation 41, we recognize the monopole moment and monopole field derived
in equations 9 and 10.

7We will use this later for atoms, where ~r1 is of the order of the nuclear radius (10−15 m)
and ~r2 of the order of the radius of an electron orbit (10−10 m).
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The first order term in the expansion of Epot can be written as:

E
(1)
pot =

[ ∫
ρ1(~r1)x1 d~r1

∫
ρ1(~r1)y1 d~r1

∫
ρ1(~r1)z1 d~r1

]


∂V2(~0)
∂x1

∂V2(~0)
∂y1

∂V2(~0)
∂z1

 (44)

=
[ ∫

ρ1(~r1)x1 d~r1

∫
ρ1(~r1)y1 d~r1

∫
ρ1(~r1)z1 d~r1

]

−G

∫ ρ2(~r2)

|~r2|3
x2 d~r2

−G
∫ ρ2(~r2)

|~r2|3
y2 d~r2

−G
∫ ρ2(~r2)

|~r2|3
z2 d~r2


(45)

= cQ
(1)
sh · cV

(1)
sh = sQ

(1)
sh · sV

(1)
sh (46)

We recognize the cartesian forms of the dipole moment and the dipole field, as
derived before.
The second order term in the expansion of Epot is:

E
(2)
pot =

1

2

 ∫
ρ1(~r1)x2

1 d~r1

∫
ρ1(~r1)x1y1 d~r1

∫
ρ1(~r1)x1z1 d~r1∫

ρ1(~r1)y1x1 d~r1

∫
ρ1(~r1)y2

1 d~r1

∫
ρ1(~r1)y1z1 d~r1∫

ρ1(~r1)z1x1 d~r1

∫
ρ1(~r1)z1y1 d~r1

∫
ρ1(~r1)z2

1 d~r1

 ·


∂2V2(~0)
∂x2

1

∂2V2(~0)
∂y1∂x1

∂2V2(~0)
∂z1∂x1

∂2V2(~0)
∂x1∂y1

∂2V2(~0)
∂y21

∂2V2(~0)
∂z1∂y1

∂2V2(~0)
∂x1∂z1

∂2f(~0)
∂y1∂z1

∂2V2(~0)
∂z21


(47)

=
1

2
cK

(2) · cW (2) (48)

This is a dot product between two (Cartesian) tensors of rank 2 (mind the fact
that this is no matrix multiplication, but short-hand notation for a dot prod-
uct)8. In contrast to the zeroth and first order terms, we cannot immediately
identify the two cartesian tensors in this dot product with multipole moments
and multipole fields. The left tensor seems to be related to the quadrupole mo-
ment (equation 29), but is not identical to it. The right tensor seems at first

8We are all accustomed to the dot product for 2 vectors of dimension n. Where we multiply
the first element of the first vector with the first element of the second vector and sum it with
the product between the second element of the first vector and the second element of the
second vector and so on to the n’th pair of elements. It is clear that both vectors need to be of
the same dimention. The same holds for the dot product between two matrices (dimensions n
x m). Here we will multiply element (0,0) of the first matrix with element (0,0) of the second
matrix and sum it with the product between (0,1) of the first matrix and element (0,1) of the
second matrix, all the way to (0,m). Then we continue summing for (1,0) to (1,m). Up to
(n,0) to (n,m). Summing each product until we get our final result (a scalar).
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sight identical to the cartesian form of the quadrupole field (equation 30), but it
is not: its trace – the Laplacian of the potential – is not necessarily zero, because
we did not need to require r1 < r2 for the Taylor expansion. By equation 34,
this trace can be different from zero. But we can write in the same way both
tensors as a sum of the quadrupole moment/field and a multiple of the unit 3×3
matrix (the integrations are noted in short-hand by curled {brackets}):

cK
(2) =

1

3

 {3x2
1

}
−
{
r2
1

}
{3x1y1} {3x1z1}

{3y1x1}
{

3y2
1

}
−
{
r2
1

}
{3y1z1}

{3z1x1} {3z1y1}
{

3z2
1

}
−
{
r2
1

}
 +

1

3

 {r2
1

}
0 0

0
{
r2
1

}
0

0 0
{
r2
1

}


(49)

cW
(2) =



∂2V2(~0)
∂x2

1
− ∆V2(~0)

3
∂2V2(~0)
∂y1∂x1

∂2V2(~0)
∂z1∂x1

∂2V2(~0)
∂x1∂y1

∂2V2(~0)
∂y21

− ∆V2(~0)
3

∂2V2(~0)
∂z1∂y1

∂2V2(~0)
∂x1∂z1

∂2f(~0)
∂y1∂z1

∂2V2(~0)
∂z21

− ∆V2(~0)
3

 +


∆V2(~0)

3 0 0

0 ∆V2(~0)
3 0

0 0 ∆V2(~0)
3


(50)

Now make the dot product between these two sums. You end up with 4 terms,
of which two will be zero: the dot product between a trace-less tensor and a
multiple of a unit matrix is zero. With the two nonzero terms we can write the
second order term of the Taylor expansion of Epot as:

E
(2)
pot =

1

6

 {3x2
1

}
−
{
r2
1

}
{3x1y1} {3x1z1}

{3y1x1}
{

3y2
1

}
−
{
r2
1

}
{3y1z1}

{3z1x1} {3z1y1}
{

3z2
1

}
−
{
r2
1

}
 ·



∂2V2(~0)
∂x2

1
− ∆V2(~0)

3
∂2V2(~0)
∂y1∂x1

∂2V2(~0)
∂z1∂x1

∂2V2(~0)
∂x1∂y1

∂2V2(~0)
∂y21

− ∆V2(~0)
3

∂2V2(~0)
∂z1∂y1

∂2V2(~0)
∂x1∂z1

∂2f(~0)
∂y1∂z1

∂2V2(~0)
∂z21

− ∆V2(~0)
3

 +

1

6

 {r2
1

}
0 0

0
{
r2
1

}
0

0 0
{
r2
1

}
 ·


∆V2(~0)
3 0 0

0 ∆V2(~0)
3 0

0 0 ∆V2(~0)
3

 (51)

Working it out shows that this is just a scalar product between two numbers,
which we can interpret as a dot product:

1

6
cQ

(0)
sz · cV (0)

sz =
1

6
∆V2(~0)

〈
r2
1

〉
(52)

=
4πG

6
ρ2(~0)

∫
ρ1(~r1) r2

1 d~r1 (53)

17



This energy term is the leading correction to the multipole expansion of equa-
tion 6 for situations where r1 can be larger than r2. It is a dot product between
two tensors of rank 0, hence this is a correction to the monopole term of the
multipole expansion. The reason why we find this contribution in the Taylor ex-
pansion and not in the (approximated) Laplace expansion is that in the former
we did not require r1 < r2.

3 The Double Ring

Consider a dumb-bell consisting out of two equal point masses connected by a
rigid massless rod. The total mass of the dumb-bell is m1, the length of the rod
is l1. As the dumb-bell will play the role of M1, we fix it with its centre of mass
(the middle of the rod) to the origin of an axis system XYZ, in such a way that
the dumb-bell can rotate freely about this origin. As second mass distribution
take 2 rings with radius R in planes parallel to XY, separated by a distance h,
one h

2 above the XY-plane and one h
2 below it. The total mass of the 2 rings is

m2, and its (constant) linear mass density is ρ2 (fig. reffig-2-3). The question
we want to solve is: if also the rings are kept fixed in XYZ, what will be the
preferred (= lowest-energy) orientation of the dumb-bell?

Figure 7: A double ring system. The rings are shaded gray for
clarity, but actually they are hollow and all mass is concentrated
at their circumference.

The condition r1
r2
� 1 becomes here l1

2 �
√

h2

4 +R2, which is fulfilled if the

length of the dumb-bell is small enough compared to the geometry of the double
ring. The problem has some circular symmetry, and it will be useful to use
spherical coordinates in the cartesian tensors9. There is no overlap and hence

9An alternative is to use equation 5 up to the quadrupole term. Try this solution yourself.
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no size-dependent monopole term. The shape-dependent monopole term can
easily be calculated to be10:

E
(0)
pot = V

(0)
sh ·Q

(0)
sh

= − Gm1m2√
h2

4 +R2
(54)

For an arbitrary orientation (θ, φ) of the dumb-bell, its quadrupole moment is:

cQ
(2)
sh =

3m1l
2
1

4

 sin2θ cos2φ− 1
3 sin2θ sinφ cosφ sinθ cosθ cosφ

sin2θ sinφ cosφ sin2θ sin2φ− 1
3 sinθ cosθ sinφ

sinθ cosθ cosφ sinθ cosθ sinφ cos2θ − 1
3

 (55)

Note that this quadrupole moment does not change upon inversion of the axis
system (θ → π − θ, φ → φ + π), which we expect as also the dumb-bell has
inversion symmetry.

In order to calculate the tensor of the gradient of the gravitational field gener-
ated by the rings at the origin of XYZ, we use the following equalities:

R = r2 sinθ0

h = 2r2 cosθ0

ρ2 = m2

4π r2 sinθ0

R2 + h2

4 = r2
2

(56)

and find that11 (there is no overlap, such that ρ2(~0) = 0):

cV
(2)
sh = − Gm2 (h2 − 2R2)

8R(R2 + h2

4 )
5
2

 −1 0 0
0 −1 0
0 0 2

 (57)

The diagonal form of this equation shows that XYZ by chance (?) is a prin-

cipal axis system for the tensor V
(2)
sh . After some straightforward goniometric

manipulation, the quadrupole energy becomes:

1

6
Q

(2)
sh · V

(2)
sh = − 3Gm1m2 l

2
1 (h2 − 2R2)

32R(R2 + h2

4 )
5
2

(2 cos2θ − sin2θ) (58)

This energy does not depend on the azimuthal orientation φ of the dumb-bell.
The value of θlow where the quadrupole energy is minimal will depend on the
sign of h2 − 2R2: 

√
2R < h =⇒ θlow = 0◦√
2R = h =⇒ θlow = any angle√
2R > h =⇒ θlow = 90◦

(59)

10Both centers of mass coincide at ~0, hence ~r0 = ~0 and one could write everything explicitly

in terms of fields as E
(0)
pot (

~0) etc.
11take d~r2 = 2 r2 sin θ0 dφ (the factor 2 is due to the double ring)
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If the radius is small enough compared to the distance between the rings, the
dumb-bell has it lowest energy when it lies parallel to the Z-axis. Not unex-
pected: the limiting case are two rings which are so small that they are almost
point masses on the z-axis, and obviously the dumb-bell would like to lie along
the z-axis in such case, as this minimizes the distance between the dumb-bell
and the masses, and hence maximizes the gravitational attraction. When the
radius is large, the dumb-bell prefers an orientation in the XY-plane. Also not
unexpected: the limiting case is two coinciding rings, and now distances are
minimized if the dumb-bell is in the plane of the rings. One special R/h-ratio
exists for which the orientation of the dumb-bell does not matter.

It is instructive to have a closer look at this. In section 2.4, we defined the
main component of a rank 2 tensor, and mass distributions are divided into
three distinct classes based on the sign of their main component (see Figure 6).
With this terminology, we see that θlow for the dumb-bell being 0◦, anything or
90◦ corresponds to the main component of the double ring’s field gradient be-
ing negative, zero or positive (equation 57). Three typical double ring systems
belonging to each of the 3 classes are drawn below.

Figure 8: The three distinct classes of double-ring systems.

For some orientations the quadrupole correction is negative and for others posi-
tive. If the total energy is approximated by the sum of monopole and quadrupole
contributions, some orientations will reduce the total energy and others will in-
crease it. This is shown schematically in Fig. 9, a kind of picture we will meet
again later in a quantummechanical situation. Note that all quadrupole energies
between the two outer values are possible (i.e. all angles θ are possible).
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Figure 9: Quadrupole corrections to the monopole energy for
a dumb-bell in a double ring, for the case where h >

√
2R.

For any orientation of the dumb-bell, a total energy between
the shown outer values is found. The quantity α has the form

α =
Gm1m2`

2
1(h2−2R2)

32(R2+ h2

4 )5/2
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1 Perturbation Theory

In quantum mechanics, the central problem to be solved for stationary systems
is the time independent Schrödinger equation. We want to find the eigenvalues
Ei (possible E values of the system) and their eigenvalues |ni〉 (possible wave
functions of the system) of the equation Ĥ |n〉 = E |n〉.

Unfortunately, most systems you can image can not be solved analytically.
Therefore we need approximations. In this chapter, the time independent per-
turbation theory will be explained. A rather powerful technique when one has
a system which is a small perturbation of a system that is precisely solvable
(known Ei’s and |ni〉’s). This will be done for non-degenerate and degenerate
systems.

1.1 Non-degenerate Time Independent System

Suppose we have a system described by the following Hamiltonian:

H = H0 + εH1

With the following conditions:

• We know the eigenvalues and eigenfunctions of the Hamiltonian H0 (the
unperturbed system):

H0 |n0〉 = E0
n |n0〉

• εH1 is a small perturbation: the energy shifts it causes are small compared
to the energy differences between the unperturbed levels. ε is directly
coupled to how strong the perturbating Hamiltonian is. We therefore
want to have it small. We also assume again that the complete set of
eigenfunctions for the unperturbed Hamiltonian also forms a complete set
for the perturbation.

What perturbation theory does is construct approximate solutions for the per-
turbed system in terms of the solutions for the unperturbed system. You can
compare it to the Taylor expansion of a (nicely behaving) function around a
certain point (a), which can be used to find the value of the function at another
point (b) without actually having to solve function at b. Just as in a Taylor
expansion, it is up to the user to choose how high he or she wants its order of
approximation to be. In this chapter, we will calculate corrections up to first
order for the energy and the wave functions. This is in many cases an already
good enough approximation, while not being difficult to calculate.
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1.1.1 Equations

Assuming all the states are non-degenerate, the expansions of the eigenstates
and eigenvalues of the Hamiltonian read:

Ei = E0
i + εE1

i + ε2E2
i + ...

|ni〉 = |n0
i 〉+ ε |n1

i 〉+ ε2 |n2
i 〉+ ...

Substituting this into the Schrödinger equation we get:

(H0 + εH1)(|n0
i 〉+ ε |n1

i 〉+ ε2 |n2
i 〉+ ...)

= (E0
i + εE1

i + ε2E2
i + ...)(|n0

i 〉+ ε |n1
i 〉+ ε2 |n2

i 〉+ ...)

These solutions should hold for any value of ε, therefore we can decouple the
big equations into small ones, for each power of ε. As we are only interested in
solutions up to first order (proportional to ε) the following two equations are
suffice:

H0 |n0
i 〉 = E0

i |n0
i 〉

H0 |n1
i 〉+H1 |n0

i 〉 = E0
i |n1

i 〉+ E1
i |n0

i 〉

The first set of equations are just the solutions to the unperturbed system. The
second set will be used to find the first order corrections.

1.1.2 First Order Energy Corrections

Rewriting the new set of equations, we get:

(H0 − E0
i ) |n1

i 〉 = (E1
i −H1) |n0

i 〉

Because we assumed that |n0
i 〉 forms a complete basis of the total problem, we

can write |n1〉 as a linear combination of the functions |n0
i 〉. This gives us:

(H0 − E0
i )
∑
j

c1ij |n0
j 〉 = (E1

i −H1) |n0
i 〉

Now multiplying with 〈n0
i | and noting that the states are orthonormal we get:

0 = E1
i − 〈n0

i |H1 |n0
i 〉 → E1

i = 〈n0
i |H1 |n0

i 〉

Multiplying with ε now gives us the first order energy correction. In general
we can see that the first order energy corrections can be found by calculating
the diagonal matrix elements of the perturbing Hamiltonian H1 in the basis of
eigenfunctions of the unperturbed Hamiltonian H0 (and then multiplying by ε).

The energy eigenvalues up to first order therefore read:

Ei = E0
i + ε 〈n0

i |H1 |n0
i 〉
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1.1.3 First Order Wavefunction Corrections

We start from the previously found equation:

(H0 − E0
i )
∑
j

c1ij |n0
j 〉 = (E1

i −H1) |n0
i 〉

Where we multiply with 〈n0
k| where k 6= i. Therefore we get:

〈n0
k| (H0 − E0

i )
∑
j

c1ij |n0
j 〉 = 〈n0

k| (E1
i −H1) |n0

i 〉

(E0
k − E0

i )c1ik = −〈n0
k|H1 |n0

i 〉

c1ik =
〈n0
k|H1 |n0

i 〉
(E0

i − E0
k)

Therefore, the eigenstates of the perturbed Hamiltonian up to first order are:

|ni〉 = |n0
i 〉+ ε

∑
j 6=i

〈n0
j |H1 |n0

i 〉
(E0

i − E0
j )
|n0
j 〉

1.1.4 Example Non-degenerate system

Suppose we have an infinitely deep potential well with width a, and a particle

in said well with mass m and charge q. Taking H0 = − h̄2

2m
d2

dx2 we get:

E0
i =

h̄2π2

2ma2
i2

n0
i (x) =

√
2

a
sin

iπx

a

Now taking H1 = −qKx̂ (a constant electric field in the x direction). Where
we assume the corrections will be small (due to an electric field that is not too
strong). The first order energy corrections can be calculated as:

E1
i = 〈n0

i |H1 |n0
i 〉 = −2qK

a

∫
x · sin2 iπx

a
dx = −qKa

2

Which gives us a downward shift of all levels, independent of i.
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1.2 Degenerate Time Independent System

If a certain energy value E0
i is degenerate, the first order approximation for the

wavefunctions is not valid, as the denominator can become zero. Assuming the
original state is `-fold degenerate, the corresponding ` eigen values of H0 + εH1

can be found in two steps.

• Create an orthonormal basis of states |nj0〉 for the `-dimensional degenerate
subspace.

• The ` corrections E1
j to the degenerate energy are found as eigen values

of the following matrix:
<n1

0| εH1|n1
0> <n1

0| εH1|n2
0> · · · <n1

0| εH1|n`0>
<n2

0| εH1|n1
0> <n2

0| εH1|n2
0> · · · <n2

0| εH1|n`0>
...

...
. . .

...
<n`0| εH1|n1

0> <n`0| εH1|n2
0> · · · <n`0| εH1|n`0>

 (1)

The ` new eigen states |nj0〉 are the eigen vectors of the above matrix.

1.2.1 Example Degenerate System

Suppose we have a free electron, this electron can have two spinstates n↓ and
n↑ which are degenerate. When applying a magnetic field, this degeneracy will
be lifted. We can write said perturbing Hamiltonian as:

H1 = −~̂µ · ~B = −

(
−2µB ~̂S

h̄

)
· ~B

Therefore we have:[
〈n↑| Ŝz |n↑〉 〈n↑| Ŝz |n〉
〈n↓| Ŝz |n↑〉 〈n↓| Ŝz |n↓〉

]
=

[
1
2 h̄ 0
0 − 1

2 h̄

]
(2)

Which is already diagonal. If this was not the case, we would need to diagonalize
it.
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2 Quantum Multipole Expansion

We have discussed the multipole expansion for a classical system, and will now
apply it to a quantum system. We will see that it is the same, except for the
need for perturbation theory.

2.1 The Total Hamiltonian

When describing the energy levels of an atom, it is the energy of the total
system ”nucleus + electrons” that is discussed. We will now look further into
formalizing said statement.

2.1.1 A Free Nucleus

Consider first a free nucleus. This system of interacting nucleons is described
by a Hamiltonian, which we will call Ĥn. This Ĥn contains a term T̂n that
describes the kinetic energy of the nucleons, and a term Ûnn that describes
the nucleon-nucleon interaction (attractive strong force and repulsive Coulomb
force):

Ĥn = T̂n + Ûnn (3)

The different states in which the nucleus can be – call them |I〉 – are the eigen
states of Ĥn. They are elements of a function space FI . These states have an
eigen energy EI , such that

Ĥn |I〉 = EI |I〉 (4)

As long as the nucleons are bound, the eigen energies that are allowed form a
discrete set (in the order of keV/MeV).

2.1.2 A Free Electron Gas

Next, consider a fixed number of electrons that is free to occupy all space,
without any other charges being present. This system of interacting electrons
is described by a Hamiltonian which we will call Ĥe:

Ĥe = T̂e + Ûee (5)

T̂e describes the kinetic energy of the electrons, Ûee the electron-electron (Coulomb)
interaction. In contrast to the nucleons which are bound by the attractive strong
force, the electrons are unbound due to the repulsive Coulomb force. They repel
each other, and a continuous range of eigen states |ψe〉 and eigen energies Eψ is
possible:

Ĥe |ψe〉 = Eψ |ψe〉 (6)

The functions |ψe〉 are elements of a function space Fψ.
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2.1.3 An atom

Now we put the nucleons and the electrons together, but temporarily switch off
the interaction between them. Nevertheless, we want to describe this system as a
whole. This can be done by direct products. An eigen state of the entire system
is given by |I〉 ⊗ |ψe〉 = |I ⊗ ψe〉, a function that belongs to the direct product
space FI ⊗Fψ. The nuclear Hamiltonian should work only on the subspace FI ,
and should therefore be rewritten as Ĥn ⊗ 11 (11 is a unity operator):(

Ĥn ⊗ 11
)
|I ⊗ ψe〉 =

(
Ĥn |I〉

)
⊗ (11 |ψe〉) (7)

= (EI |I〉)⊗ (1 |ψe〉) (8)

= EI |I ⊗ ψe〉 (9)

Similarly for Ĥe. The entire system can now be described by(
Ĥn ⊗ 11 + 11⊗ Ĥe

)
|I ⊗ ψe〉 = (10)

=
(
T̂n ⊗ 11 + Ûnn ⊗ 11 + 11⊗ T̂e + 11⊗ Ûee

)
|I ⊗ ψe〉 (11)

= (EI + Eψ) |I ⊗ ψe〉 (12)

In reality, nucleons and electrons do interact with each other by the Coulomb
interaction. The Hamiltonian that describes this interaction must work on the
entire space FI ⊗Fψ. We can formally represent it by an operator Q̂⊗ V̂ . The
full Hamiltonian is then

Ĥn ⊗ 11 + 11⊗ Ĥe + Q̂⊗ V̂ (13)

In line with the gravitational example, the idea is now that we make a Taylor
expansion of the difficult term Q̂⊗ V̂ 1:

Q̂⊗ V̂ = Q̂(0) ⊗ V̂ (0) + Q̂(1) ⊗ V̂ (1) + Q̂(2) ⊗ V̂ (2) + . . . (14)

The Hamiltonian can now be rearranged and some familiar contributions show
up, with a hierarchy of energy scales (see also VIP-1):

T̂n ⊗ 11 + Ûnn ⊗ 11 Tn + Unn keV −MeV nuclear energy levels

11⊗ T̂e + 11⊗ Ûee + Q̂(0) ⊗ V̂ (0) Te + Uee + E
(0)
ne eV (meV ) atomic energy levels

Q̂(1) ⊗ V̂ (1) + Q̂(2) ⊗ V̂ (2) E
(1)
ne + E

(2)
ne µeV hyperfine structure

Different states of the nuclei are separated by energies of the order of keV to
MeV. It is the nucleon-nucleon interaction and the kinetic energy of the nucleons
that is responsible for this. The kinetic energy of the electrons, the electron-
electron interaction and the monopole term of the electron-nucleus interaction

1In this formal discussion, we neglect size-dependent overlap contributions for a while, just
for clarity.

7



introduce states that are separated by energies in the eV-range. Depending on
how much relativity is taken into account here, also the fine structure (meV)
can be present. Higher order multipole terms of the electron-nucleus interaction
are responsible for the hyperfine structure, with energy differences in the µeV
range.

2.2 Applying Perturbation Theory

The presentation of section 2.1 is maybe a little misleading, as it could give
the impression that we know all the hamiltonians in equations 13 and 14, and
that we know how to find their eigen states. That is not true. It is the goal
of theoretical nuclear physics first to find Ĥn and secondly to solve it, but
even that first goal has by far not yet been reached. The same problem holds
for the nuclear operators Q̂(0), Q̂(1), Q̂(2), . . .: it is not known how to handle
them with first principles nuclear theory. For our final equations that describe
the hyperfine structure, we will have to find ways how to deal with this lack
of information. Actually, the only part of the problem that can be solved to
a good extent from first principles (atomic or condensed matter) theory, is the
hamiltonian Ĥ0 = 11⊗T̂e + 11⊗Ûee + Q̂(0)⊗V̂ (0): the form of this hamiltonian is
known, and there are quite accurate methods known how to solve it numerically.
The real situation is hence that we can write down |I〉 only formally, while for∣∣∣ψ(0)
e

〉
a numerical expression can be found2. Fortunately, our Taylor expansion

guarantees that the effect of Q̂(1) ⊗ V̂ (1), Q̂(2) ⊗ V̂ (2), . . . will be small. This
means that we can make use of first order perturbation theory : we will solve

the ‘easy’ hamiltonian Ĥ0, find its eigenvalues E0 and eigenfunctions
∣∣∣ψ(0)
e

〉
,

and then evaluate the additional small hamiltonian for the eigenfunctions of the
easy hamiltonian:

Etot ≈ E0 +
〈
ψ(0)
e ⊗ I

∣∣∣ Ĥ1

∣∣∣I ⊗ ψ(0)
e

〉
(15)

with

E0 =
〈
ψ(0)
e ⊗ I

∣∣∣ Ĥ0

∣∣∣I ⊗ ψ(0)
e

〉
(16)

The fact that not only a Taylor series but also perturbation theory
is used, is the main difference between the treatment of atoms or
solids and the gravitational example. In the following sections, we will
derive explicit expressions for Ĥ1 in the non-relativistic case, and in the sections
dealing with the monopole shift, the magnetic dipole and the electric quadrupole
interactions, the energy corrections due to this new interactions will be evaluated
for the cases of free atoms (ions) and solids.

2Actually, not necessarily for

∣∣∣ψ(0)
e

〉
itself, but for the corresponding charge density. But

for methods such as Density Functional Theory, the density is all we need. At this point

however, just imagine that we do know

∣∣∣ψ(0)
e

〉
.
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2.3 Charge-charge Interaction

We focus first on the electrostatic part of the electromagnetic potential. Con-
sider a nucleus described by a many-body wave function |I〉, that is an eigenstate
of the nuclear Hamiltonian. The latter makes that the nuclear charge density
ρn(~rn) is time independent. This nucleus is immersed in an electron cloud with
which it interacts, the electron cloud being provided either by a single atom or by
a crystalline solid. This electron cloud is described by a many-body wave func-
tion |Ψe〉 that is an eigenstate of the Hamiltonian for the atom or the crystalline
solid3. The corresponding electronic charge density ρe(~re) is time independent
as well. The many-body wave functions can be related to the charge densities
as we are used to in quantum mechanics:

<ψn|ψn> = < I| I > = 1 =

∫
n

ψ∗n(~rn)ψn(~rn) d~rn =
1

Ze

∫
n

ρn(~rn) d~rn

<ψe|ψe> = 1 =

∫
e

ψ∗e(~re)ψe(~re) d~re = − 1

Ne

∫
e

ρe(~re) d~re

Z is the number of protons in the nucleus, N is the number of electrons in
the unit cell of the crystal (for a free neutral atom, N=Z). Using the following
conversion table:

G ↔ − 1

4πε0
(17)

~r1 ↔ ~rn (18)

~r2 ↔ ~re (19)

m1 ↔ eZ (20)

m2 ↔ −eN (21)

we can now translate our formula for the potential energy in the gravitational
analogue into

Eqq
pot =

1

4πε0

∫
n

∫
e

ρn(~rn)ρe(~re)

|~re − ~rn|
d~rn d~re (22)

= − e2NZ

4πε0
〈ψe ⊗ I|

1

|~re − ~rn|
|I ⊗ ψe〉 (23)

tacitly assuming that for crystalline solids we evaluate this expression once for
every nucleus – with different choice of origin – and add the nucleus-nucleus
interaction later. Again using the so-called Laplace expansion or multipole
expansion in spherical coordinates, we can write the Hamiltonian Ĥqq

ne for the
electrostatic interaction between nucleus and electrons as

Ĥqq
ne = − e2NZ

ε0

( ∞∑
n=0

rnn
rn+1
e

1

2n+ 1
Y n(θn, φn) · Y n(θe, φe)

)
(24)

3In the case of a crystalline solid, periodic boundary conditions guarantee that it is sufficient
to describe the many-body wave function within one unit cell of the crystal only.
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(electron penetration in the nucleus is not considered here, therefore re>rn).
This Hamiltonian corresponds to the full Q̂⊗ V̂ of equation 13 (for the case of
charge-charge interaction). The total energy of the system nucleus + electrons
can now be written as (operators on the direct product space are not explicitly
written as such):

Eqq
tot = 〈ψe ⊗ I| T̂n + Ûnn︸ ︷︷ ︸ + T̂e + Ûee + Ĥqq

ne︸ ︷︷ ︸ |I ⊗ ψe〉 (25)

= (EI + Eel) |I ⊗ ψe〉 (26)

We don’t know at all what EI is, due to the beforementioned problems with
theoretical nuclear physics. What Eel is we don’t know either, but we can
approximate it as follows4:

Eel = 〈ψe ⊗ I| T̂e + Ûee −
e2NZ

4πε0 re︸ ︷︷ ︸
Ĥ0

|I ⊗ ψe〉 + (27)

〈ψe ⊗ I| −
e2NZ

ε0

( ∞∑
n=1

rnn
rn+1
e

1

2n+ 1
Y n(θn, φn) · Y n(θe, φe)

)
︸ ︷︷ ︸

Ĥ1→∞

|I ⊗ ψe〉

(Mind the sum, which runs now from n = 1.) Again, we remind that the
nucleus-nucleus interactions for cyrstalline solids needs to be added later. The
Hamiltonian Ĥ0 in 27 contains the kinetic energy of the electrons, the electron-
electron interaction, and the electrostatic interaction of the electron cloud with a
point-like nucleus. In atomic physics and condensed matter physics, sufficiently
accurate methods are known to find eigenvalues and eigenstates of this Hamilto-
nian (always Ûee has to be approximated, but several acceptable schemes exist

for that). Call the eigenstates of this Hamiltonian
∣∣∣ψ(0)
e

〉
, and the eigen energies

E
(0)
ne . The superscript (0) indicates that these are 0th order results, that will be

used soon to calculated first order perturbations.

In analogy with the gravitational multipole moments, we can define the electro-
static multipole moments of the nucleus:

Qnq = eZ

√
4π

2n+ 1
〈I| rn1Y nq (θn, φn) |I〉 (28)

They have as units C mn. Some books define the multipole moments divided
by the electron charge e, and then multiply the dot products Q · V by e. Such
multipole moments have as units mn.

4Eel is different from the Eψ of equation 6: the latter is the eigen value of a hamiltonian
that does not contain the nucleus-electron interaction.
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Explicit expressions – following our definition of the multipole moments –
are:

eZ
√

4π 〈I|Y 0
0 (θn, φn) |I〉 : the electrostatic monopole moment of the nucleus

(shortly: the electric monopole moment, 1 component. Units: C.).

eZ
√

4π
3 〈I| r1Y

1
q (θn, φn) |I〉 : the 3 components electrostatic dipole moment of

the nucleus (units: C m). We know already from the gravitational example
that this can be made to vanish by taking the origin of XYZ in the center
of charge of the nucleus, and we will show below also an independent
general proof.

eZ
√

4π
5 〈I| r

2
1Y

2
q (θn, φn) |I〉 : the 5 components of the electrostatic quadrupole

moment of the nucleus (units: C m2 or electron barn (eb)).

One half of the n-pole moments is zero however. We can understand this by
looking at the parity5 of the operators rnn Y

n. Because of Y nq (π − θ, φ + π) =
(−1)n Y nq (θ, φ) and because the parity of rnn is always even (rn is a distance,
which is positive in whatever axis system), the parity of rnn Y

n is even for even
n and odd for odd n. It is an experimentally well-established fact that also the
nuclear states |I〉 have a well-defined parity, i.e. either even or odd. Therefore
the parity of rnn Y

n |I〉 will have the parity of |I〉 if n is even, and the opposite
parity if n is odd. But in the latter case 〈I| rnn Y n |I〉 is the scalar product be-
tween two states 〈I| and rnn Y

n |I〉 of opposite parity, which is zero. Therefore
only terms with even n will survive6.

Due to the beforementioned gaps in the theory of nuclear structure, it is not
possible yet to calculate the nuclear multipole moments. They can be measured,
however, and that’s how we will work around our problem: we will replace the
(even) multipole moments by their experimental values. Rather than having a
fully computable theory of interacting systems of nuclei and electrons, we are
satisfied with a theory that is computable only if the nuclear information in
plugged via experimentally determined parameters. That will turn out to be
sufficient to allow for and interpret a variety of experimental measurements on
the interacting system (cfr. the experimental methods of type 1, 2 or 3 in the
second half of this course).

5The parity of an operator describes its behaviour under an inversion of coordinates. An
operator with even parity does not change under inversion. An operator with odd parity
changes sign under inversion. Operators who behave in more complicated way can always be
written as a sum of an operator with even and one with odd parity. The parity of a state of
a quantum system is defined in a similar way.

6One can do a similar reasoning in wave mechanics, where for odd n an integral over all
space of an odd function will appear, which is zero again. As seen in the course video ”Why
are odd electric moments zero?”
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In analogy with the gravitational multipole moments we define also the electro-
static multipole fields of the electron cloud (in a crystalline solid, these are the
multipole fields at the center of mass of one of the nuclei, chosen by the place
where we have put the origin of the axis system):

V nq = − eN√
4πε0

√
1

2n+ 1

〈
ψ(0)
e

∣∣∣ 1

rn+1
e

Y nq (θe, φe)
∣∣∣ψ(0)
e

〉
(29)

Units are V/mn. Some explicit expressions:

− eN√
4π ε0

〈
ψ

(0)
e

∣∣∣ 1
re
Y 0

0 (θe, φe)
∣∣∣ψ(0)
e

〉
: the electrostatic monopole field at the nu-

cleus (monopole field, 1 component. Units: V).

− eN√
12π ε0

〈
ψ

(0)
e

∣∣∣ 1
r2e
Y 1
q (θe, φe)

∣∣∣ψ(0)
e

〉
: the 3 components of the electrostatic dipole

field at the nucleus (units: V/m)

− eN√
20π ε0

〈
ψ

(0)
e

∣∣∣ 1
r3e
Y 2
q (θe, φe)

∣∣∣ψ(0)
e

〉
: the 5 components of the electrostatic quadrupole

field (or electric-field gradient) at the nucleus due to the electron cloud
(units: V/m2).

In contrast to the nuclear multipole moments, the electronic multipole fields of
atoms and solids can be calculated directly from quantum mechanics by modern
ab initio methods. By using such calculations together with the experimental
input of the nuclear moments, the interaction energy (which is a measurable
quantity) of the different multipole orders can be predicted.

The electron states
∣∣∣ψ(0)
e

〉
have in general no well-defined parity, we can there-

fore not in general prove particular multipole fields to be zero. Nevertheless, due
to the beforementioned parity properties of the nuclear moments, only terms
with even n will appear in the hamiltonian, which in short-hand notation looks
like:

Ĥ = T̂n + Ûnn + T̂e + Ûee + Q̂(0) ⊗ V̂ (0)︸ ︷︷ ︸
Ĥ0

+
∑

n≥2 and even

Q̂(n) ⊗ V̂ (n)

2n+ 1︸ ︷︷ ︸
Ĥ1→∞

(30)

From the gravitational example in the previous chapter, we know that the con-
tribution to the energy by H1→∞ is much smaller than the contribution from H0,
as the dimensions of the nucleus (rmax

n ≈ 6 · 10−15m for already large nuclei)
are much smaller than the average distance of the closest electrons (10−12m).
For this reason, the effect of Ĥ1→∞ is very small, and rapidly decreasing with
higher n. We can therefore approximate Ĥ1→∞ by the quadrupole term:

H ≈ T̂n + Ûnn + T̂e + Ûee −
e2NZ

4πε0 re︸ ︷︷ ︸
Ĥ0

+
− e2NZ

5ε0

(
r2
n

r3
e

Y 2(θe, φe) · Y 2(θn, φn)

)
︸ ︷︷ ︸

Ĥ1
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(31)

It is therefore allowed to apply first order perturbation theory, and to evaluate

Ĥ1 in the eigen states
∣∣∣ψ(0)
e

〉
of Ĥ0. We will do this in the part about the electric

quadrupole interaction.

2.4 Current-current interaction

The nucleus and the electron cloud do not feel one another only by the Coulomb
interaction discussed above. As the protons are moving inside the nucleus, also
currents are present in there. Apart from these so-called convection currents,
there are also currents due to the spin of the protons and the neutral neutrons
(spin currents). The moving electrons in the electron cloud constitute a current
too. The interaction between these two currents represents the dynamic part
of the electromagnetic interaction, and supplements the electrostatic part from
the previous paragraph7. From classical electromagnetism it is known that a
current density distribution ~j(~r) generates a vector potential ~A(~r):

~A(~r) =
µ0

4π

∫ ~j(~r ′)

|~r ′ − ~r |
d~r ′ (33)

If we call the current density inside the nucleus~jn(~rn) and the one of the electron
cloud ~je(~re), then the potential energy due to the current-current interaction in
the full system nucleus + electrons can be expressed as the energy of the nuclear
current distribution in the vector potential due to the electrons:

Ejj
pot =

∫
n

~jn(~rn) · ~Ae(~rn) d~rn

=
µ0

4π

∫
n

∫
e

~jn(~rn) ·~je(~re)
|~re − ~rn |

d~rn d~re (34)

This expression is similar to equation 22, except for the fact that in the numera-
tor a dot product between vectors appears, instead of a product between scalars.
We will therefore not be able to make the same kind of multipole expansion as
we did for the static part of the electromagnetic interaction: an expansion in
vector spherical harmonics will be needed. This is mathematically much more

7In previous sections, we always used static mass and charge contributions, and we will
continue to do so as we still work with pure eigenstates. A static charge distribution does
not imply however that there would be no currents. This can be understood from classical
electromagnetism by means of the continuum equation (~j is the current distribution)

∂ρ

∂t
+ ~∇ ·~j = 0 (32)

If ~∇ ·~j = 0, then ∂ρ
∂t

= 0 and the charge distribution is static. But ~∇ ·~j = 0 does not imply

that ~j = ~0! Currents that fulfill the relation ~∇ ·~j = 0 are called steady currents in classical
electromagnetism. Stationary states in quantum mechanics correspond to steady currents.
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involved, and we will not do this8. The current-current interaction hamiltonian
for a single electron and a nucleus – provided the two current distributions do
not overlap – turns out to be:

Ĥjj =

∞∑
n=0

B(n) ·M (n)

2n+ 1
(35)

The tensor M (n) depends on nuclear properties only, and is called the nth mag-
netic multipole moment of the nucleus. It can be shown to have odd parity for
even n, and even parity for odd n. The tensor B(n) is determined completely
by properties of the electron cloud. Because of the well-defined parity of the
nuclear states | I >, all expectation values of M (n) for a state | I > will vanish if
n is even. This makes the term with n = 1 the leading term in 35.

The dimensions of M (1) are J/T (Joule per Tesla), and it can be identified
with the magnetic moment9 of the nucleus ~µI (a vector). B(1) has as dimension
T , and is the opposite of the magnetic field at the nucleus, generated by the
electrons. The latter field is called the magnetic hyperfine field ~B(0) 10.

2.5 Summary

We can now finally write down the approximate11 hamiltonian expressing the
hyperfine corrections to the potential energy of a nucleus and an electron cloud:

Ĥ ≈ T̂n + Ûnn + T̂e + Ûee −
e2NZ

4πε0 re︸ ︷︷ ︸
Ĥ0

+ (36)

− e2NZ

5ε0

(
r2
n

r3
e

Y 2(θe, φe) · Y 2(θn, φn)

)
− ~̂µI · ~̂B(~0)︸ ︷︷ ︸

Ĥ1

Where the first part in Ĥ1 is the electronic quadrupole term, and the second
part is the magnetic dipole term.

8The derivation can be found at various places, for instance in Theory of Hyperfine Struc-
ture, Charles Schwartz, Physical Review 92(2) (1955) 380-395, in Electron Paramagnetic Res-
onance of Transition Ions, A. Abragam and B. Bleany, Clarendon Press - Oxford, 1970,
chapter 17, and in Theory of the Hyperfine Structure of Free Atoms, L. Armstrong, 1971,
Wiley (Interscience), New York.

9Note that again we have no reliable tools to calculate this nuclear dipole moment: it has
to be replaced by experimental values.

10The lowest order term in the current-current interaction is calculated explicitly and el-
egantly in Classical Electrodynamics, J.D. Jackson, 3rd edition 1998, John Wiley & Sons,
sections 5.6 and 5.7

11We emphasize that the approximation is due to i) using first order perturbation theory
and ii) truncating the multipole expansions.
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In the next 3 chapters we will discuss in a quantitative way the effect of the
charge and current (or electric and magnetic) hyperfine interaction on the en-
ergy. As before, we will stick to a non-relativistic treatment. We will also
pay attention to what happens when the two charge or current distributions
overlap, and size contributions will appear. The scheme of our discussion is
shown in Fig. 1: both for the charge-charge and current-current interactions
there are contributions that are zero by symmetry. The non-zero contributions
have a shape-dependent and size-dependent part, which might or might not be
negligible.

Figure 1: A schematic overview of all contributions to electric
(charge-charge) and magnetic (current-current) hyperfine fields,
ordered according to their multipole order, and split into shape-
dependent and size-dependent contribution. Contributions that do
not exist are barred, contributions that are too small to be relevant
are indicated. When a dashed line is present in a box, the con-
tribution above the line does not vanish for a point nucleus, while
the contribution below the line does. Explaining this scheme is the
topic of the following 3 chapters
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1 Monopole Shift

1.1 Interaction Energy Nucleus And Electrons

In the previous chapter, we have seen that we can Taylor-expand the interaction
term between the nucleons and the electrons as follows:

Q̂⊗ V̂ = Q̂(0) ⊗ V̂ (0) + Q̂(1) ⊗ V̂ (1) + Q̂(2) ⊗ V̂ (2) + . . . (1)

With the following expressions:

Qnq = eZ

√
4π

2n+ 1
〈I| rn1Y nq (θn, φn) |I〉 (2)

V nq = − eN√
4πε0

√
1

2n+ 1

〈
ψ(0)
e

∣∣∣ 1

rn+1
e

Y nq (θe, φe)
∣∣∣ψ(0)
e

〉
(3)

Where we made the agreement to treat all nuclear properties as phenomenolog-
ical parameters, whilst keeping the electronic properties as operators. As well
as keeping re>rn. Suppose we now want to calculate the first term for a nucleus
with one electron. We will get the following expressions:

Q00 =

√
4π√
4π

∫
ρn(~r)d~r = eZ (4)

V00 =
1

4πε0

√
4π√
4π

∫
ρn(~r)

r
d~r =

−e
4πε0

〈Ψe|
1

r
|Ψe〉 (5)

E0
0 = Q00V00 = −e2Z

4πε0
〈Ψe| 1

r |Ψe〉 (6)

As you can see, these are just the non-relativistic energy levels of a point charge
Ze in the potential of an electron.
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Figure 1: Systematic overview of nuclear multipole and quasi-
multipole-moments and electric multipole and quasi-multipole-
fields that appear in the multipole expansion of two interacting
(and overlapping) classical charge distributions. The first col-
umn gives the regular multipole expansion for point nuclei: the
monopole, quadrupole, and hexadecapole interactions. The next
columns give the quasi-multipole-moments/fields for every multi-
pole interaction, denoted by a tilde: these are corrections to the
multipole interactions due to electron penetration into an extended
nucleus. Entries in the large round brackets are by generalization
only, and are not systematically derived in this course. The ob-
jects in each line are spherical tensors of a given rank (rank 0 for
line 1, rank 2 for line 2, and rank 4 for line 3).

A nucleus is, however, not a point charge. Further multipole moments can be
calculated to further correct the energy levels due to the shape of the nucleus.
In case of charge-charge interactions, these can be found via the quadrupole
moment, the hexadecapole moment,... Not only does the shape of the nucleus
amount to corrections, so does the fact that the nucleus and the electrons can
overlap. In a fully exact description of the multipole expansion with overlapping
charged distributions, every individual multipole term itself becomes a series
expansion in powers of a quantity that is characteristic for the amount of overlap.
Most of the effect of overlap is usually captured already in the first non-leading
term of each of those expansions. The first order correction to the monopole
moment is called the ”first order monopole-shift” and will be the topic of this
chapter. The first order correction to the quadrupole moment is called the ”first
order quadrupole shift”, and so on and so forth. Each higher order moment
having a smaller value then the previous one. The same goes for the order of
the overlap correction. The second order monopole shift will be much smaller
then the first order monopole shift.
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1.2 First-order Monopole Shift Without Overlap

On the previous page, we have calculated the monopole correction due to the
interaction between the nucleus and the electrons. The full energy level up to
this correction (with N electrons) is as follows:

E
qq (0)
sh = EI +

〈
ψ(0)
e ⊗ I

∣∣∣ T̂e + Ûee −
e2NZ

4πε0 re

∣∣∣I ⊗ ψ(0)
e

〉
(7)

= EI + Ee + Eee︸ ︷︷ ︸
Eα

− e2NZ

4πε0
〈I| I〉

〈
ψ(0)
e

∣∣∣∣ 1

re

∣∣∣∣ψ(0)

〉
︸ ︷︷ ︸

〈 1
re
〉

(8)

= Eα −
e2NZ

4πε0

〈
1

re

〉
(9)

Eα is just shorthand notation for some contributions that will always be the
same. In the second term we again have the (dot) product between the monopole
moment of the nucleus eZ and the monopole field at the origin due to the elec-

trons, − eN4πε0

〈
1
re

〉
(as usual, we either consider a neutral atom (N=Z) or one of

the nuclei of a solid, with the origin chosen at that nucleus). Note that we again
use the fact that we have no knowledge of the nuclear many-body wave function
|I〉): instead of calculating the monopole moment from the nuclear many-body
wave function, we replace it by the experimentally known total charge of the
nucleus.

This shape-dependent monopole contribution of the charge-charge interaction,
is by far the largest contribution to the electrostatic energy of the system nu-
cleus + electrons. It is insensitive to details of the nuclear charge distribution,
but through < 1

re
> sensitive to details of the electronic charge distribution.

Different states |ψ(0)
e > will lead to different < 1

re
> and therefore to the distinct

atomic levels with their eV-separation in the first zoomed in part of VIP-1.

1.3 First-order Monopole Shift With Overlap

Let us now look at the monopole term, with a first order correction due to
overlap. Looking back at the gravitational result, the size-dependent monopole
contribution is:

Eqq (0)
sz =

eZ

6

 〈r2
n

〉
0 0

0
〈
r2
n

〉
0

0 0
〈
r2
n

〉
 ·


∆V (~0)

3 0 0

0 ∆V (~0)
3 0

0 0 ∆Ve(~0)
3

 (10)

=
eZ

6
∆V (~0) 〈I| r2

n |I〉︸ ︷︷ ︸
〈r2n〉

(11)
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Using Poisson’s equation:

∆Ve(~re) = − ρe(~re)

ε0
(12)

the energy including shape- and size-dependent monopole contributions be-
comes1:

E(0)
qq = Eα −

e2NZ

4πε0

〈
1

re

〉
− eZ

6ε0
ρe(~0)

〈
r2
n

〉
(13)

Note that the size-dependent contribution is always positive. Equation 13 can
be rewritten as:

E(0)
qq = Eα + Q̃

{
− eN

4πε0

〈
1

re

〉}
+ Q̃

{
− 1

6ε0
ρe(~0)

〈
r2
n

〉}
(14)

with Q̃ = eZ the nuclear charge. This notation shows explicitly that both the
shape- and size-dependent monopole contributions are a product between the
nuclear charge (the nuclear monopole moment) and a potential at the nucleus.
The potential that appears in the shape-dependent contribution depends en-
tirely on properties of the electrons (it is the electronic monopole field). The
effect of the overlap between nuclear and electronic charge distributions can be
interpreted as due to an extra positive potential − 1

6ε0
ρe(~0)

〈
r2
n

〉
at the nucleus.

This potential depends not only on the electronic property ρe(~0), but also on
the nuclear property

〈
r2
n

〉
. The latter is not really surprising. If electrons pen-

etrate into the nucleus, they will interact differently with a nuclear charge that
is contained into a small or a large volume. This difference is expressed by the
mean square nuclear radius. In the limiting case of a point nucleus (

〈
r2
n

〉
→ 0),

this size-dependent correction becomes zero, as we intuitively expect. The same
is true when electrons can/do not enter the nucleus. Then this term is zero as
well.

1.4 Electrons Inside The Nucleus

We have said that the size-dependent monopole term arises from electrons pene-
trating the nucleus. The questions we now have to ask ourselves is: do electrons
penetrate the nucleus? In other words, does this term even exist in reality?
In a non-relativistic treatment, s-electrons do have a non-zero probability at
the position of the nucleus ~r = ~0. This happens even if the nucleus is a single
mathematical point, as the s-electron wave function does not vanish at ~r = ~0.
In a relativistic treatment also the p 1

2
electrons (= relativistic quantum number

κ = 1, from the Dirac equation) can penetrate into the nucleus. Can we esti-
mate the size of said size-dependent term? Only2 s-electrons will contribute to
the overall charge density ρe at ~0. For a fully filled s-shell, we can therefore write

1Check that all terms have dimensions of energy.
2in the non-relativistic treatment
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ρe(~0) = −2e
∣∣∣ψs(~0)

∣∣∣2, where ψs is a (single particle) s-electron wave function.

Filling out values for the Be-atom (Z = 4, rn = 1.4 · 10−15A
1
3 m, |ψ2s(~0)|2 =

2Z3

a30π
) yields 3.5 µeV. Overlap corrections to the monopole term are therefore of

the order of magnitude of µeV. In order to calculate numerical values for these
corrections, experimental values for

〈
r2
n

〉
must be known (they cannot yet be

calculated from first principles nuclear theory). Alternatively, if energies are
measured, this equation can be used to determine

〈
r2
n

〉
.

Figure 2: Difference between radial part of the wave function for
2s and 2p electrons of the H-atom. One can cleary see that the 2s
electrons have a change >0 to be at the origin.

1.5 Isotope and Isomer Shift

The correction to the monopole energy due to the penetration of electrons into
the nucleus does not lift any degeneracy, but only shifts the levels by a positive
amount which depends on the amount of penetration and the mean square
radius of the nucleus. The nuclei of different isotopes of the same element can
be expected to have different nuclear radii, and hence different corrections. This
effect is well-known in atomic spectroscopy as one of the contributions to the
isotope shift, namely the field shift. There is another contribution to this isotope
shift, which is due to the fact that different isotopes can have different masses:
the mass shift. The observed isotope shift (in Fig. 2 on the next page) is the
sum of field shift and mass shift. Two states (isomers, excited nuclei) of the
same nucleus can have different radii a well, this is called the isomer shift. To
be clear, this is not illustrated in Fig. 2.
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Figure 3: Calculated mass shifts in free Li ions. All energies are
relative to the completely ionized limit. Energies are expressed
in cm−1 (multiply by 0.5809 to get values in µeV). For instance,
the 3S1 configuration (1s1 2s1 with the two spins parallel) in in-
finitely heavy Li+ has an energy which is 87.73 cm−1 (50.96 µeV)
lower than the same configuration in 7Li+, and 102.34 cm−1

(59.44 µeV) lower than in 6Li+. Comparisons with an infinitely
heavy ion cannot be checked experimentally, but the difference of
14.61 cm−1 (8.48 µeV) between the 3S1 configurations of 7Li+

and 6Li+ is present in experiments. Similar interpretations can be
made for the 2S1/2 configuration, while the 3P0 configuration con-
tains complications not discussed in this text. (Picture taken from
Isotope Shifts in Atomic Spectra, W. H. King, Plenum Press,
1984.)
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1.6 Second Order Monopole Shift

We have just discussed the first order monopole shift, but what about the second
order monopole shift? This correction is, as previously stated, much smaller
then the first order shift (4th power of nuclear radius instead of 2nd). It will
nonetheless pop up when dealing with so called ”muonic atoms”. These are
atoms where one of the electrons is replaced by a muon, which is about 207
times heavier than the electron. Therefore it will circle much closer to the
nucleus and have a larger overlap with said nucleus.

2 A Toy Model For The Monopole Shift

The writer of this document didn’t think there was more background to add in
addition to the course video about this topic. Writing about what is discussed
in the video would be a literal translation from video to text, and this is not the
purpose of these documents. For additional background on this video, please
read https://biblio.ugent.be/publication/2988716/file/2988720.pdf. This is the
paper from where said toy model originates and is writen by K. Rose and S. Cot-
tenier (the lecturer of this course). The paper is free to download for everybody
with a UGent account.
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1 Prologue

We have seen that the leading term in the Hamiltonian for the current-current
interaction is:

Ĥjj = − ~̂µI · ~̂B(~0) (1)

In first order perturbation, we have to evaluate this in the eigenstates
∣∣∣I ⊗Ψ

(0)
e

〉
of the monopole Hamiltonian:

Ejj = −
〈

Ψ(0)
e ⊗ I

∣∣∣ ~̂µI · ~̂B(~0)
∣∣∣I ⊗Ψ(0)

e

〉
(2)

We will examine this expression for the case of a free atom and a solid. The
approach will be different in both cases. For a free atom, it will be possible
to rewrite Ĥjj as a sum of operators for which the states of the total atom
(electrons + nucleus) are eigen states. For a solid this is not possible. There

we will let ~̂µI operate on the nuclear space and ~̂B(~0) on the electron space
separately.

2 Free atoms

If we take spin-orbit coupling into account, the electron cloud of a free atom or

ion is in a state
∣∣∣Ψ(0)

e

〉
= |J〉 that has a well-defined, single value of J (Hyper-

finecoure A: framework, 1.2.3 Spin-Orbit Coupling (fine splitting)). Without
hyperfine interaction, the orientation of the nuclear angular momentum – in-
dicated by I – is independent from the orientation of the electronic angular
momentum – indicated by J . Therefore the (2I + 1)(2J + 1) possible mutual
orientations are all degenerate. Each such a state can be described either by I,
mI , J , mJ , or by I, J , F , mF , with F given by

F = I+J, I+J−1, . . . , | I−J | (3)

F is a new angular momentum quantum number, that gives the angular momen-
tum of the entire atom or ion. Each value of F indicates another mutual orienta-
tion of I and J , ranging from parallel (F = I +J) to antiparallel (F = |I − J |).
As long as the hyperfine interaction is not taken into account, there is no need
to use F .

The nuclear magnetic moment operator is parallel and related to the nuclear
angular momentum operator via:

~̂µI =
µ

I h̄
~̂I (4)

The scalar quantity µ (‘the’ magnitude of the magnetic moment of the nucleus

in the state |I〉) is experimentally known. Similarly also ~̂B(~0) – which we note
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now explicitly as ~̂BJ(~0) – is parallel to ~̂J , say ~̂BJ = α ~̂J1. If we now define the
experimentally accessible quantity BJ as:

BJ = <J, mJ = J | B̂Jz| J, mJ = J > (5)

= αh̄J (6)

we can write similarly to 4:

~̂BJ =
BJ
J h̄

~̂J (7)

The Hamiltonian 1 can be written now as2:

Ĥjj = − µBJ

h̄2 IJ
~̂I · ~̂J

= − µBJ

2h̄2 IJ
(F̂ 2 − Î2 − Ĵ2) (8)

We evaluate matrix elements of this hamiltonian in states specified by I, J , F ,
mF , noted shortly as |F >. Because I, J and F are good quantum numbers for
such a state, the matrix elements are:

<F | Ĥjj |F > = − µBJ

2h̄2 IJ
<F | F̂ 2 − Î2 − Ĵ2|F >

= − µBJ

2h̄2 IJ
h̄2 (F (F + 1)− I(I + 1)− J(J + 1))︸ ︷︷ ︸

C

= − 1

2
aC (9)

Here we defined the hyperfine coupling constant a as:

a =
µBJ
IJ

(10)

Equation 9 tells that for a free atom with the nucleus in a state | I > and
the electron cloud in a state | J > the energy contribution due to the current-

current interaction depends on the mutual orientation of ~I and ~J as specified by
F . The (2I+1)(2J+1)-fold degenerate level splits into different levels with each
another value of F . The degeneracy is not completely lifted, as each F -level is
still (2F + 1)-fold degenerate (mF does not appear in equation 9, this is due to
the overall spherical symmetry [section 2.1]). The hyperfine coupling constant
sets the scale for the energy differences between the F -levels. An example for
| I = 3/2 > and | J = 3/2 > is shown in fig. 1. In this example, the energy
between levels with a different F varies, which can be proven in general to be
true. Similar to Land’s interval rule:

EF − EF−1
EF−1 − EF−2

=
F (F + 1)− (F − 1)F

(F − 1)F − (F − 2)(F − 1)
=

F

F − 1
(11)

1This can be understood classically: the magnetic field at the center of a planar circular
current loop is parallel to the angular momentum of the moving charges.

2Use ~̂F
2

= F̂ 2 =

(
~̂I + ~̂J

)2

= Î2 + Ĵ2 + 2~̂I · ~̂J

3



Figure 1: Magnetic hyperfine splitting for an atom with nuclear
spin I = 3/2 and electronic spin J = 3/2. The energy of the total
system depends on how I and J are oriented with respect to each
other, which is given by the new total spin F . The picture uses a
correct scale. The right column gives the degeneracy of each level.
The hyperfine variant of the Landé interval rule is illustrated as
well.

An order of magnitude estimate for the amount of splitting can be found by
evaluating a for the typical values of I = 3/2, J = 3/2, µ = µN and B = 100 T,
which yields a = 2.2 ·10−25 J = 1.4 µeV . Note that we have again circumvented
the lack of first principles knowledge of the nuclear magnetic dipole moment by
substituting it by an experimental value (µ or g).

The hyperfine coupling constant a is a useful quantity. Measuring the energy
splitting by either nuclear or atomic spectroscopy for a nucleus with known µ is
an experimental way to determine the hyperfine field. Once the hyperfine field
is known, the measurement can be repeated on another isotope of the same
element. As the electron cloud is the same, also the hyperfine field will be the
same3. Measuring the energy splitting therefore makes it possible to determine
the magnetic moment of the new isotope (I can be determined because 11 has to
be fulfilled). The hyperfine field can also be calculated by theory, which makes
it possible to determine an unknown µ and I without a previous calibrating
experiment.

3Some caution has to be given to the hyperfine anomaly.
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The formalism we described here is applicable to free atoms and free ions only.
In order to study free atoms or ions experimentally, they have to be measured
while flying in a beam through vacuum. Qualitatively, the formalism can be
used also to describe ions in ionic compounds (salts), as the Na+ ion in NaCl.

Finally, note that the above formalism can be applied in exactly the same way
to describe the coupling of the electronic L and S to J by the spin-orbit in-
teraction. In the spin-orbit coupling constant an electronic magnetic moment
of the order of µB instead of µN will appear. Because the latter is 3 orders of
magnitude smaller than the former, and because the relevant magnetic field in
the spin-orbit case is certainly not larger than a typical hyperfine field, typical
spin-orbit splittings are in the meV -range. The distance between levels with
different J will be given by 11, with J instead of F . This is called the Landé
interval rule.

2.1 Breaking rotational invariance

After having taken into account the magnetic dipole term, not all degeneracy
in the states of the atom or ion has been lifted: every state characterized by
some F is still 2F + 1-fold degenerate due to mF (the orientation of the total
angular momentum). The reason of this is obvious. The J-degeneracy was
lifted because not every orientation of the angular momentum of the electron
cloud with respect to the angular momentum of the nucleus was equivalent. We
have taken into account this orientation of ~J with respect to ~I by considering
the total angular momentum ~F : different values for F indicate different relative
orientations of ~J with respect to ~I. But as soon as we consider the total angu-
lar momentum, we can again ask about its orientation. Now there is spherical
symmetry again (or rotational invariance, in other words), as there is no special

direction with respect to which we can specify the direction of ~F . If we would
introduce an external magnetic field, that would provide the special direction
and the different mF -levels would be Zeeman-split.

It will be convenient for later use to discuss here another (imaginary) way of
breaking the rotational invariance of the atom. Imagine we could ‘freeze’ the
electronic subsystem in a state with both J = 3/2 and mJ = 3/2 fixed. This
implies that somehow we could determine a special z-direction, along which the
z-component of ~J is taken. Instead of precessing about ~F , ~J now precesses
about the z-axis and yields a static magnetic field at the nucleus. A nucleus
with I = 3/2 has 4 allowed orientations with respect to the same z-axis. They
are given in fig. 2 as pictorial representations. For each of these 4 situations,
the state of the entire system (nucleus + electrons) is given as a decomposition
in states |F, mF >. We can calculate the energy of these 4 states, as we know
by fig. 1 the energies of individual F -states. Clearly, the 4 orientations of the
nucleus correspond now to an equidistant Zeeman-splitting (fig. 3).
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Figure 2: Vector representation of the coupling of two spins I and
J, being both 3/2. In units of h̄, their z-components are restricted

to ± 3
2 and ± 1

2 . The magnitude is
√

3
2

(
3
2 + 1

)
h̄ = 1.93 h̄. We

consider the 4 different situations with mJ fixed to 3/2, and mI

taking all of its 4 different values. In all 4 situations, the wave
function and its energy are given.

Figure 3: Energy diagram of the 4 states given in fig. 2. Note that
this is an equidistant (Zeeman) splitting.
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This is an important result. Our discussion with the total angular momentum
~F is valid only for atoms and ions, where ~J has a meaning. The entire sys-
tem ‘nucleus+electrons’ is rotationally invariant. If this rotational invariance is
broken by forcing the electron cloud with respect to some special direction, we
cannot use ~J any more, and hence also not ~F . In that case the energy of the
system for a given state of the electron cloud (= for a given hyperfine field) is

determined by the orientation of ~I with respect to the field. This will lead to a
Zeeman splitting of the states of the system. Such a splitting is equidistant, in
contrast to the situation for an atom or ion (fig. 1). This situation will appear
for solids.

3 Solids

Consider an ideal solid, i.e. a perfect crystalline lattice that covers all space,
without boundaries. The presence of the crystal breaks the isotropy of space:
there is no rotational invariance in this case. The electron cloud is described by

a many body wave function
∣∣∣ψ(0)
e

〉
, but the concept of a well-defined angular

momentum ~J is not valid any more. We are in the case described in section 2.1,
where the electron cloud generates a magnetic field at the origin – where we
have put our nucleus of interest – that has a well-determined direction in space.
We will take the z-axis of our axis system along this magnetic field4. In this axis
system, the magnetic hyperfine field therefore has a z-component only5, and we

can write it as B(~0) =
〈

Ψ
(0)
e

∣∣∣ B̂(~0)
∣∣∣Ψ(0)

e

〉
. The dot product of equation 2 can

now be written as:

Ejj = − 〈I| ~̂µI |I〉 ·
〈
ψ(0)
e

∣∣∣ ~̂B (~0) ∣∣∣Ψ(0)
e

〉
(12)

= − 〈I| ~̂µI |I〉 · ~B(~0) (13)

= − 〈I| µ̂I,z |I〉 B(~0) (14)

A numerical value for the hyperfine field B(~0) can be found if an explicit form of
the operator B̂(~0) is known, and if the ground state many body wave function∣∣∣Ψ(0)

e

〉
for the solid is known. The problem of obtaining

∣∣∣Ψ(0)
e

〉
in order to find a

numerical value for the hyperfine field will not be discussed, but is computable
via point-nucleus DFT. The operator ~̂µI has been written explicitly in equa-
tion 4. We will see later how we can transform it into a sum of operators for
which the |I〉 are eigenstates, after which the matrix elements are numerically
found.

4This does not impose restriction: in case one wants to choose another axis, you can still
solve the problem first with z parallel to the hyperfine field, and then transform back to the
wanted axis system.

5Such an axis system is a Principle Axis System (PAS) for the magnetic hyperfine field.
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3.1 The nuclear magnetic moment operator

In equation 4, we wrote the magnetic moment operator by means of the nu-
clear angular momentum operator. The three components of the latter vector
operator

~̂I = Îx~ex + Îy~ey + Îz~ez (15)

can be written entirely in terms of the operator Îz and the raising and lowering
operators Î±, with the properties:

Î+ = Îx + iÎy Î+ |I, mI〉 =
√
I(I + 1) − mI(mI + 1) h̄ |I, mI + 1〉

(16)

Î− = Îx − iÎy Î− |I, mI〉 =
√
I(I + 1) − mI(mI − 1) h̄ |I, mI − 1〉

(17)

This can be done as follows:

~̂µIx =
µ

2Ih̄

(
Î+ + Î−

)
(18)

~̂µIy =
µ

2Ih̄

1

i

(
Î+ − Î−

)
(19)

~̂µIz =
µ

Ih̄
Îz (20)

Now we can easily find all matrix elements between states |I, mI〉:

〈m′I , I| µ̂x |I, mI〉 =
µ

2I

(√
I(I + 1) − mI(mI + 1) δm′

I
,mI+1 +

√
I(I + 1) − mI(mI − 1) δm′

I
,mI−1

)
(21)

〈m′I , I| µ̂y |I, mI〉 =
µ

2iI

(√
I(I + 1) − mI(mI + 1) δm′

I
,mI+1 −

√
I(I + 1) − mI(mI − 1) δm′

I
,mI−1

)
(22)

〈m′I , I| µ̂z |I, mI〉 =
µ

I
mI δm′

I
,mI

(23)

As soon as we know the values of µ and I from experiment, these matrix ele-
ments are known – without the need for explicit expressions of |I〉 or |I, mI〉.
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3.2 Operator description of ~̂µ

We have just introduced states | I, mI> of the nucleus, which are eigen states of

the nuclear spin angular momentum operator ~̂I and its z-component Îz. We can
get an idea about how fast a nucleus is spinning by treating its spin classically.

A nucleus in the state | I = 1
2> has an expectation value of

√
3
2 h̄ = 9.1·10−34 Js

for the magnitude of its spin angular momentum. In order to obtain a similar
value, a particle with the mass of a proton orbiting in a circle with radius equal
to a typical nuclear radius (about 10−15 m) needs according to the classical
equation 2πmr2ν to make the tremendous number of 9 · 1021 revolutions per
second.

The equivalent feature in quantum physics of the classical magnetic moment
vector, is the magnetic moment (vector) operator ~̂µ. The magnitude µ(I, mI)
of the magnetic moment of a nucleus in a state | I, mI> is the expectation value

of the operator ~̂µ in that state:

µ(I, mI) = | ~µ(I, mI)| = | <I, mI | ~̂µ| I, mI> | (24)

In general, ~̂µ is built from the operators ~̂L and ~̂S working on the individual
nucleons, and from the gl and gs of this nucleons. This microscopic approach is
worked out in detail in the theory of nuclear models. Here we use the practical
approach to define ~̂µ:

~̂µ =
g µN
h̄

~̂I (25)

where the dimensionless g factor is experimentally determined for every state
of every nucleus6. This can also be expressed by the gyromagnetic ratio γ:

~̂µ = γ ~̂I γ =
g µN
h̄

(26)

If one speaks about ‘the’ magnetic moment µ of a nucleus with spin I, one refers
by convention to the following quantity:

µ = <I, mI = I| µ̂z| I, mI = I > (27)

= γh̄I (28)

= gµNI (29)

Typical experimental values of g are of the order of unity, with either sign. Note
that µ is an observable quantity, while µ̂z and ~̂µ are operators.

6When applied to a classical planar current loop, we retrieve the desired property that –
because of the angular momentum which is normal to the plane of the loop – the magnetic
moment is perpendicular to the loop.
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3.3 Energy levels of the magnetic dipole hamiltonian for
solids

Equation 14 gives the first order perturbations to the total energy due to the
magnetic dipole interaction, where the matrix elements of the magnetic moment
operator are given by equation 23, and the matrix element of the magnetic hy-
perfine field operator by equation 60. Assuming for a while that we already can
obtain numerical values for the latter, we can write these corrections explicitely
as the matrix elements of a nuclear Hamiltonian Ĥnuc

jj :

Ejj = 〈I, mI | Ĥnuc
jj |I, mI〉 (30)

Ĥnuc
jj = − µB(~0)

I h̄
Îz (31)

These nuclear matrix elements are sensitive to the orientation of the nucleus,
as they depend on the quantum number mI . The original, unperturbed Hamil-
tonian T̂n+ Ûnn +Ĥ0 does not depend on mI . We must therefore use first order
perturbation theory for the degenerate case. Fortunately, the matrix formed by
〈m′I , I| Ĥnuc

jj |I, mI〉 is already diagonal (use equation 23), and the eigenvalues
– which are the first order corrections to the energy – can be read immediately
from the diagonal (that will not be the case for the quadrupole interaction):

EmI
jj = − µmI

I
Bhf (32)

(write Bhf for B(~0) from now on). These corrections depend on the orientation
of the nuclear magnetic moment with respect to the hyperfine field, as specified
by mI . Using equation 29, this energy can be expressed in terms of the g-factor
gI of the nuclear state |I〉:

EmI
jj = − gI µN Bhf mI (33)

Verify that the orientation of ~µI with the lowest energy is always parallel to ~Bhf

(mI = ±I), independent on the sign of gI . The nuclear spin I can be parallel

or antiparallel to ~Bhf , dependent on the sign of gI .

The nuclear spin I can take 2I + 1 different orientations with respect to ~Bhf .
The energy difference between two subsequent orientations is:

EmI+1
hf − EmI

hf = − gI µN Bhf = h̄ ωL (34)

This is independent of mI , and we thus find the familiar equidistant Zee-
mansplitting (fig. 4).
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Figure 4: Zeeman splitting under influence of a magnetic hyperfine
field.

For rather large values of gI = 1 and Bhf = 100 T , the energy between two sub-
sequent levels is about 5 ·10−25 J or 3 µeV, which is a very small value. Even at
a quite low temperature of 1 K, the thermal energy kT is still 86 µeV. Therefore,
at 1 K (and any higher temperature) a collection of nuclei subject to a hyperfine
field will not settle in its lowest-energy orientation, but will by thermal agitation
populate all mI -levels and will hence have no preferred orientation. In order to
obtain spontaneous orientation, temperatures in the mK-range are needed.

Provided one can in one way or another prepare an oriented collection of nuclei,
will the hyperfine splitting then be observable? The typical splitting between
two states | I1> and | I2> is roughly 100 keV. If one of these is split by a mag-
netic hyperfine field, we could in principle observe this splitting by detection of
the radiation which is emitted in the radioactive decay from the higher into the
lower level. However, detecting variations of the order of µeV on radiation with
an energy of the order of 100 keV needs a resolution which is way beyond the
capabilities of radiation detectors. More involved detection methods are needed
to observe hyperfine splittings, and some of them will be discussed in the second
part of this course.

The experimentally observable quantity is the hyperfine splitting ∆E, which
depends on the product of two other observable quantities Bhf and gI (or µ).
Therefore, by measuring ∆E, we will not know Bhf and gI (or µ) separately,
only their product. If by an independent measurement the observable magnetic
moment µ of the nucleus is known7, a ∆E-measurement can be used to deter-
mine Bhf . On the other hand, if Bhf is somehow known8, a ∆E-measurement
determines µ.

7Several techniques for this exist in nuclear physics.
8By a direct calculation of the matrix elements of equation 60 for instance.
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3.4 The magnetic hyperfine field operator

We will now construct an explicit expression for the operator B̂(~0) (or ~̂B(~0)).
We will do this not by the general way of vector spherical harmonics, but by a
much less general ad hoc approach.

WARNING: the following derivation – up to the line just before equation 60
– might contain some inconsistencies. Instead of considering the currents inside
the nucleus interacting with the magnetic field due to the electrons – which is
the way of thinking we adopted up to now – we will take the alternative but
equivalent point of view of the current due to the electrons interacting with the
magnetic field due to the nucleus. The latter point of view is mathematically
somewhat more convenient, but both approaches would result in the same final
expression.

The nuclear magnetic moment ~µI at the origin of an axis system generates
a vector potential ~An(~r) at a position ~r equal to9:

~An(~r) = ~∇×
(
µ0 ~µI
4π r

)
=

µ0

4π

~µI × ~r
r3

(35)

The corresponding magnetic field at this position ~r is then

~Bn(~r) = ~∇× ~An(~r) (36)

It is clearly seen that this magnetic field is due to ~µI . The classical hamiltonian
for a single electron |ψe> moving in the scalar Coulomb potential Vn and vector

potential ~An of the nucleus is:

Hclas =

(
~p+ e ~An

)2
2m

− eVn

=

(
− h̄2

2m
~∇2 − eVn

)
+

e

2m

(
~p · ~An + ~An · ~p

)
+

e2

2m
~A2
n (37)

with the linear momentum operator ~p = −ih̄~∇. In the last equation we recog-
nize the hamiltonian of the electron in the absence of the magnetic field, plus a
correction due to the presence of ~Bn (or equivalently, ~An). We are interested in

first order corrections only, and therefore neglect the term with ~A2
n.

~p is an operator and can work both on ~An and on the wave function. Therefore(
~p · ~An

)
|ψe> = −ih̄~∇ ·

(
~An |ψe>

)
= −ih̄

(
~∇ · ~An

)
|ψe> −ih̄ ~An · ~∇|ψe>

=
(
~An · ~p

)
|ψe> (38)

9This equation implies we adopt the Coulomb gauge ~∇ · ~An = 0.
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because of the Coulomb gauge ~∇· ~An = 0. The first order correction due to the
magnetic field (current-current interaction) is therefore:

Hclas
jj =

e

m
~An · ~p

=
e

m

µ0

4π r3
(~µI × ~r) · ~p

=
e

m

µ0

4π r3
~µI · (~r × ~p) (39)

=
µBµ0

2π h̄ r3
~µI · ~Li (40)

with µB the Bohr magneton and ~Li the orbital angular momentum operator for
a single electron. For clarity, we stress here that ~r is the position vector of the
electron in an axis system with the nucleus in the origin.

But in reality, we are not dealing with a classical problem. To describe rel-
ativistic effects (such as spin), we could of course resort to the Dirac hamilto-
nian to substitute equation 37. This is difficult however. An often used simpler
approach is the Pauli approximation, which adds spin to the hamiltonian ‘by
hand ’10:

HPauli =

(
− h̄2

2m
~∇2 − eV

)
+

µBµ0

2π h̄ r3
~µI · ~Li + µB

(
~σ ·
(
~∇× ~An

))
︸ ︷︷ ︸

HPauli
jj

(41)

The vector ~σ is the vector of Pauli matrices:

~σ = (σx, σy, σz) , σx =

[
0 1
1 0

]
σy =

[
0 −i
i 0

]
σz =

[
1 0
0 −1

]
(42)

~S =
h̄

2
~σ (43)

~S is the spin angular momentum operator. In the Pauli formulation, a state
|ψe> is specified by a 2× 1-matrix containing a spin up and spin down contri-
bution:

|ψe> ∼
[
ψ+

ψ−

]
(44)

<ψe| ∼
[
ψ+ ψ−

]
(45)

As a result, HPauli
jj should be a 2 × 2-matrix11. This is obviously true for the

second term in 41, while for the first term it is understood that both ~µI and

10Verify that all terms in this hamiltonian have the dimension of energy.

11Verify that the eigenvalue of σz for a pure up-state

[
ψ+

0

]
is +1, and -1 for a pure

down-state. The same you can prove from considering that the eigenvalues of Sz are ± h̄
2

and
combining this with 43
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~LI are notation for a diagonal matrix with on both diagonal positions the same
vector operator ~µI or ~LI . Now work out the spin dependent part of 41:

µB ~σ ·
(
~∇× ~An

)
=

µBµ0

4π
~σ ·
(
~∇×

(
~∇× ~µI

r

))
(46)

=
µBµ0

4π

[(
~σ · ~∇

)(
~µI · ~∇

)
− (~σ · ~µI) ~∇2

] 1

r
(47)

=
µBµ0

4π

[(
~σ · ~∇

)(
~µI · ~∇

)
− 1

3
(~σ · ~µI) ~∇2

]
1

r
− µBµ0

6π
(~σ · ~µI) ~∇2 1

r

(48)

The reason for the trivial step in the last line will become clear below. You can
readily verify that ~∇2

(
1
r

)
= 0 if r 6= 0. We will soon need to evaluate the ex-

pectation value < ψe|HPauli |ψe>, which involves an integral over the region of
space where the electron can be. If the electron does not penetrate the nucleus,
i.e. if ~r 6= ~0, then all terms with ~∇2

(
1
r

)
will disappear from 46. No penetrations

means no overlap of the nuclear and electronic current distributions. But even
when sticking to a non-relativistic treatment, s-electrons – and only they – can
penetrate the nucleus (as seen in hyperfine course A: electric monopole shift
1.4), making the two current distributions to overlap. We should therefore treat
s- and non-s electrons seperately. For non-s electrons the magnetic contribution
to the Pauli hamiltonian becomes:

HPauli
jj =

µBµ0

2π h̄ r3
~µI · ~Li +

µBµ0

4π

(
~σ · ~∇

)(
~µI · ~∇

)
(49)

=
µBµ0

2π h̄ r3
~µI · ~Li +

µBµ0

4π

(
−~σ · ~µI + 3 (~σ · ~er) ( ~µI · ~er)

r3

)
(50)

For s-electrons, the same hamiltonian will apply, but with an extra contribution
at the point r = 0 in the integration. We calculate now this extra overlap
contribution (size contribution), for which we need the Poisson equation for the
potential Ve(~r

′), the latter being the Coulomb potential at ~r ′ due to an electron
at ~r 12:

~∇2Ve(~r
′) =

eρe(~r
′)

ε0
(51)

~∇2

∫
−eρe(~r)

4π ε0 |~r − ~r ′|
d~r =

eρe(~r
′)

ε0
(52)

~∇2

∫
ρe(~r)

|~r − ~r ′|
d~r = −4π ρe(~r

′) (53)

12Sticking to our convention, we use the notation ρe(~r) for the probability density of an
electron at the position ~r. In most texts on classical electricity, this symbol is used for the
charge density, however. Our notation eρe(~r) is therefore equivalent with −ρe(~r) in traditional
notation
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Apply this general expression at the position ~r ′ = ~0, where the nucleus is:

~∇2

∫
ρe(~r)

r
d~r = −4π ρe(~0) (54)

< ψe| ~∇2

(
1

r

)
|ψe> = −4π ρe(~0) (55)

Because we know that for every r 6= 0 the integral must yield a zero contribution,
we conclude:

< ψe| ~∇2

(
1

r

)∣∣∣∣
r=0

|ψe> = −4π ρe(~0) = −4π |ψe(~0)|2 = −4π < ψe| δ(~r)|ψe>

(56)

~∇2

(
1

r

)
= −4π δ(~r) (57)

It can be proven – but we don’t do it – that the first two terms in equation 48
cancel to a good approximation at ~r = ~0 . Therefore for s-electrons the magnetic
contribution to the Pauli hamiltonian becomes:

HPauli
jj =

µBµ0

2π h̄ r3
~µI · ~Li +

µBµ0

4π

(
−~σ · ~µI + 3 (~σ · ~er) ( ~µI · ~er)

r3

)
+

2µBµ0

3
(~σ · ~µI) δ(~r)

(58)

Because non-s electrons will never appear at ~r = ~0, the term with the Dirac
δ-function will not contribute for these electrons, and therefore equation 58 is
our final and unambiguous expression for the magnetic contribution the the
hamiltonian for any type of electrons in the Pauli approximation.

Finally, we now change back to the point of view of currents inside the nu-
cleus, interacting with the magnetic field at the position of the nucleus due to
the electrons. This is easily done because in equation 58 we recognize a dot
product between the operator ~̂µI and another operator which we now identify

with ~̂B(~0):

ĤPauli
jj = −~̂µI · ~̂B(~0) (59)

The explicit form for the expectation value of ~̂B(~0) is:

~B(~0) = −µBµ0

2πh̄

〈
ψ(0)
e

∣∣∣ ~Li
r3

∣∣∣ψ(0)
e

〉
+

µBµ0

4π

〈
ψ(0)
e

∣∣∣ ~σ − 3 (~σ · ~er)~er
r3

∣∣∣ψ(0)
e

〉
+

− 2µBµ0

3

〈
ψ(0)
e

∣∣∣~σ δ(~r) ∣∣∣ψ(0)
e

〉
(60)

After having discussed the energy levels of the magnetic dipole hamiltonian in
section 3.3 – the task we started with at the beginning of section 3 – some
properties of the 3 contributions in equation 60 will be discussed in section 3.5.
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3.5 Properties of 3 contributions to the magnetic hyper-
fine field

In equation 60 we obtained an expression for the magnetic hyperfine field ~Bhf

at a site in an infinitely large crystal, an expression that consists of three con-
tributions. With modern methods and computers, these contributions can be
calculated from first principles, without experimental input (remember: this
was not the case for the nuclear magnetic moment). We will not do this here
yet, but rather discuss some of the properties of these three contributions to the
magnetic hyperfine field.

3.5.1 The orbital contribution

Due to our choice of Z-axis on page 7, we know that −~µI · ~Bhf = −µz Bhf . The
orbital contribution to the hyperfine field becomes:

Borb
hf = −µBµ0

2πh̄
< ψe|

Lz
r3
|ψe> (61)

This expression is valid both for solids13 and for atoms. For atoms, it can be
worked out further. First consider the contribution due to a single electron,
indexed i:

Borb,i
hf = −µBµ0

2π
mL, i < ψe,i|

1

r3
|ψe,i> (62)

= −µBµ0

2π
mL, i <

1

r3
> (63)

Restricting ourselves to cases where the LS-coupling scheme is valid, and where
therefore

∑
imL, i = L, the contribution due to a given shell is:

Borb
hf = −µBµ0

2π
<

1

r3
> L (64)

where
〈

1
r3

〉
is now averaged over all electrons in the shell. From equation 64

we conclude that the orbital hyperfine field is zero when L is zero, i.e. for
completely filled and half-filled shells, and for situations where ‘quenching’ of
the orbital angular momentum occurs. ‘Quenching’ happens for ions with in-
completely filled d-shells, incorporated in metals: due to the influence of the
crystal field on the d-electrons, L turns out to become zero and the orbital
hyperfine field vanishes. For lanthanide ions in metals, the valence 6s and 5d
shells strongly reduce the influence of the crystal field on the incomplete 4f shell,
which is nearer to the nucleus. Therefore the orbital hyperfine field due to the

13Common implementations of this term in computer codes will take into account only
contributions from electrons in a region of space occupied by the atom to which the nucleus
at which the orbital field is calculated belongs. Or in other words: we consider the orbital
moment only of those electrons that orbit the nucleus under consideration. For a reliable
calculation of the contribution due to orbital moments at other atoms in the crystal, quantum
mechanics is less needed.
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4f shell will survive.

We can estimate the size of the orbital hyperfine field for a lanthanide ele-
ment where the f-electron sits at a typical distance of a0/2 to be (−100 · L) T,
with L ranging from 0 to 6. For ions with d-electrons at a typical distance of
a0, the orbital hyperfine field is about (−10 · L) T, with L often zero due to
quenching.

In practical implementations in computer codes, the proper quantummechanical
expression for the orbital contribution will be evaluated only for electrons that
appear within the volume occupied by the atom to which the nucleus under
consideration belongs. For electrons that appear on other atoms, a quantum
mechanical treatment is not so much needed, and a classical summation is usu-
ally made.

The orbital hyperfine field can easily be understood in a classical way: it is
the magnetic field at the nucleus due to the current loop of the electrons or-
biting the nucleus. Consider a single electron in a circular orbit with radius
r in the XY-plane. The magnetic field at the nucleus due to this electron is
classically:

~B =
µ0I

2r
~ez I = − ev

2πr
(65)

The classical orbital angular momentum is me ~r×~v, with magnitude merv and
z-component merv ~ez. In classical mechanics, the magnitude of the total orbital
angular momentum vector and its z-component are equal, in quantum mechanics
both quantities are

√
l(l + 1) h̄ and lh̄ respectively14. By using the ‘equality’

merv ~ez = lh̄ ~ez
15 one sees immediately that

~B = − µ0ev

4πr2
~ez (66)

= − µ0µB
2π

l

r3
~ez (67)

which is equal to 63 if also there the electron is taken to be in the XY-plane.

Finally, we prove that the orbital contribution to the hyperfine field is zero,
when the electron cloud has cubic (or higher) symmetry. This can be seen e.g.

by deducing from equation 39 the classical ~Borb, class
hf :

~Borb, class
hf = − e

m

µ0

4π

∫
~r × ~p
r3

ρ(~r) d~r (68)

For cubic symmetry, x-, y- and z-coordinates play the same role. If the electron
therefore appears at a position (x0, y0, z0), it must by symmetry pass also

14Just for curiosity: note that in the classical limit (l→∞) both become equal again, as it
should be.

15It is a correspondence between classical and quantum mechanics, rather than an equality.
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at the positions (±x0, ±y0, ±z0), with corresponding velocities. These are
8 positions in total. You can quickly check that the contribution of these 8
points to equation 68 is zero16. For every other point of the orbit you can
find a corresponding set of 8 equivalent positions as well, and the integral in
equation 68 will yield zero.

3.5.2 The spin dipolar contribution

To give a correct quantummechanical treatment of the spin dipolar contribution
to the hyperfine field is somewhat more cumbersome than it was for the orbital
contribution17. We are therefore satisfied with a classical interpretation only.
The classical interaction energy between two magnetic dipoles ~µI (which can be
the nuclear spin) and ~µs (which can be the electron spin) of Fig. 5 is given by:

Edip =
µ0

4π

~µI · ~µs − 3 (~µI · ~er) (~µs · ~er)
r3

(69)

= −~µI · ~Bs (70)

The magnetic field at the position of the dipole ~µI is then:

~Bs = − µ0

4π

~µs − 3 (~µs · ~er) ~er
r3

(71)

Using

~µs =
gSe−

µB

h̄
~Si (72)

and 43 one sees that:
~µs = −µB ~σ (73)

which yields after taking the expectation value in a state |ψe> the second term

of equation 60. The spin dipolar hyperfine field ~Bdip,spin
hf can therefore be un-

derstood as generated by the intrinsic magnetic moment of the electrons.

In practical implementations in computer codes, the proper quantummechanical
expression for the spin dipolar contribution will be evaluated only for electron
spins that appear within the volume occupied by the atom to which the nucleus
under consideration belongs. For electron spins that appear on other atoms, a
quantum mechanical treatment is not so much needed, and a classical summa-
tion is usually made.

16Use e.g. that if x0 → −x0, then px = m dx
dt

∣∣
x0
→ −px.

17The reason is that the dot product ~σ · ~r is a 2 × 2 matrix of scalars: after taking the
z-component of equation 60 we are still left with all three components of ~σ and the troubles
they carry with them.
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Figure 5: Geometry for a dipole-dipole interaction between two
magnetic moments.

As for the orbital contribution, we can prove that the dipolar contribution due
to a spin distribution with cubic (or higher) symmetry is zero. Consider a
magnetic moment µ, distributed over space with a probability density ρm(~r) (the
latter has as dimension 1/m3). At any point in space, the infinitesimal moment
µρm(~r) is pointing in the z-direction. Classically, the z- and xy-components of
the magnetic field at the origin due to this distribution can be shown to be

Bdip, class
z =

µ0

4π
µ

∫
3 cos2 θ − 1

r3
ρm(~r) d~r =

µ0

4π
µ

∫
3z2 − r2

r5
ρm(~r) d~r

(74)

Bdip, class
xy =

µ0

4π
µ

∫
3 cos θ sin θ

r3
ρm(~r) d~r =

µ0

4π
µ

∫
3z
√
x2 + y2

r5
ρm(~r) d~r

(75)

For ρm(~r) with cubic symmetry, the integral can be considered as an infinitesi-
mal sum over sets of 8 equivalent (= same ρm(~r0)) points (±x0, ±y0, ±z0). It
is easy to check that the contribution due to each such set is zero, and hence Bz
and Bxy are zero too. When the symmetry is lower than cubic, but there is still
axial symmetry about the z-axis, the xy-component will be zero. To obtain the
z-component, the opposite contributions of ρ↑(~r) and ρ↓(~r) have to be summed.
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A spin distribution with cubic symmetry is realized at a lattice site with a cubic
point group18, or in the case of a completely or half-filled shell in an atom. A
special case of a half-filled shell is a single s-electron: this will have neither an
orbital or a spin dipolar contribution. A typical value for ~Bs in cases where it
does not vanish you can find by evaluating 71 with µs ≈ µB and r ≈ a0, which
gives about 25 T.

3.5.3 The Fermi contact contribution

The Fermi contact contribution to the hyperfine field is:

Bfhf = − 2µBµ0

3

[
〈Ψe,↑| 〈Ψe,↓|

]
σz δ(~r)

[
|Ψe, ↑〉
|Ψe, ↓〉

]
(76)

= − 2µBµ0

3

(∣∣∣ψe, ↑(~0)
∣∣∣2 − ∣∣∣ψe, ↓(~0)

∣∣∣2) (77)

(note the appearance of the δ-function, which is the density operator we encoun-
tered before, but now applied to electrons with a specific spin). This celebrated
equation due to Enrico Fermi19 gives the most important contribution to the
hyperfine field at spd-impurities in metals, where the orbital contribution is
quenched, and the dipolar field is small (or zero due to symmetry). As an ex-

ample we calculate the contribution to Bfhf by a single 2s up electron, of which

the probability density at ~r = ~0 is |ψ2s(~0)|2 = 2Z3

a30π
:

Bfhf , ↑ = − 4µBµ0

3π a30
Z3 = −33.4 · Z3 Tesla (78)

For Z=1 to 92, this yields contact fields from -33 T till -26 MT (Mega-Tesla).
For 1s electrons, the contact fields are even 8 times higher, for n ≥ 3 they are
lower20. Such huge fields are normally not observed however, as most often
in the same shell an s-electron with the opposite spin is present, that yields a
contact field of different sign. At first sight, both fields would exactly cancel
each other. This is often not the case, however, due to an effect called ’core
polarization’, which will shortly be touched in Sec. 5.2.

18Some attention is required here. Although at a given lattice site there can be crystallo-
graphic cubic point symmetry, this need not be the case for the electron distribution. Indeed,
if spin-orbit coupling is important, the spin introduces a preferential direction which breaks
the cubic symmetry. For instance, a substitutional Ca-impurity in bcc Fe sits at a site with
cubic symmetry. Both orbital and dipolar contributions vanish, it feels a hyperfine field due
to the Fermi contact contribution only (see soon). But for a much heavier U-impurity at the
same site, spin orbit coupling is important. For this case, there will be orbital and dipolar
fields, on top of the Fermi contact field.

19E. Fermi, Z. Phys. 60 (1930) 320
20Note once more that non-s electrons have a zero probability at the nucleus, and will not

contribute to the contact field.
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Be aware that the presence of a Fermi contact field is not a quantum effect, as
is sometimes said, but rather a manifestion in a quantum system of a classical
effect. The fundamental origin of the contact field lies in the overlap of two cur-
rent distributions (size contribution), and can happen therefore also in classical
electromagnetism. In the quantum system electrons+nucleus, such an overlap
occurs, with a contact field as a result. Some elaborations on this point can be
found in Manfred Bucher, European Journal of Physics 21 (2000) p. 19-22.

We just used the word ‘size contribution’ again. Indeed, the orbital and spin
dipolar contributions to the magnetic dipole term are present whenever we deal
with two current distributions. They depend on the details of the shape of
the current distributions, and are therefore shape dependent terms in the sense
of the multipole expansion. The Fermi contact contribution stems from the
overlap of the two current distributions, just as the size dependent part of the
monopole term stems from the overlap of two charge distributions. The Fermi
contact contribution is part of a dipole term and is therefore a dot product
between two vectors, while the size dependent part of the monopole term was
a (dot) product between two scalars (look back at Hyperfinecourse A: quantum
version Fig.1 to see the systematics).

There is one important difference, however, between the size-dependent charge-
charge monopole contribution and the size-dependent current-current dipole
contribution. The additional potential that was generated due to the charge-
charge overlap depends on electronic and nuclear properties (Hyperfinecourse
A: quantum version eq. 14), while the additional field (Fermi contact field)
generated by the current-current overlap depends on electronic properties only.
This has as a consequence that even in the limit of a point nucleus, the Fermi
contact field will exist (as long as there is a net spin density at that point).
In other words: the Fermi contact field is not sensitive to how exactly the nu-
clear magnetic moment is distributed over the volume of the nucleus. It is clear
that the details of this distribution must have an influence. This (small) ef-
fect is called the Bohr-Weisskopf effect, and it will be discussed qualitatively in
section 6.
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4 Symmetry properties of magnetic hyperfine
interactions in solids

When talking about symmetry, we need to make sure we specify which prop-
erty we are discussing (and from which point of view). Take image 6.a, which
is a 2D analogon of a body centred cubic unit cell. From the perspective of
the central atom, there is ’cubic’ symmetry (more strictly: the point group of
the central atom has the same symmetry operations as a square). There are
no magnetic moments involved in this example, in contrast to the next two ex-
amples. Therefore, we can consider this cubic symmetry as being a chemical
symmetry property.

Apart from chemical symmetry, there might be symmetry related to magnetic
properties as well. In fig. 6.b, a 2D analogon of a ferromagnetic cubic unit cell
is shown. The four magnetic moments on the neighbouring atoms point in the
same direction. A rotation over 90 degrees is now not a symmetry operation
any longer, as it changes the orientation of the moments. This is an example of
magnetic symmetry that is different from chemical symmetry. In fig. 6.c, the
orientation of the magnetic moments is different, and is such that the fourfold
rotation symmetry is restored. Here chemical and magnetic symmetry are iden-
tical.

The role of symmetry in HFF is as follows. If there is chemical and magnetic
cubic symmetry (image on the right), the orbital and spin dipolar contributions
to the magnetic HFF disappear. If there is only chemical symmetry, these parts
only approximately disappear. This is seen in the next section when talking
about the magnetic hyperfine contributions to the HFF field of Fe in Fe4N.

Figure 6: On the left: chemical cubic symmetry. In the centre:
chemical cubic symmetry but no magnetic symmetry. On the
right: chemical and magnetic cubical symmetry.
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Figure 7: Unit cell of Fe4N (a=b=c).

5 Examples of magnetic hyperfine fields in solids

5.1 The HFF of Fe in Fe4N

We will discuss the HFF of Fe in ferromagnetic Fe4N. The Fe sublattice has
fcc structure, and in the center of a conventional fcc cube sits one Nitrogen
atom. We will discuss this example, but in a more qualitative measure (such as
symmetry etc.) (Fig. 7).

Already at the level of crystallographic symmetry, there are two inequivalent
Fe sites in this structure: six Fe-I atoms, which are at the face centers of the
cube and are separated from N by one half of the lattice constant, and eight Fe-
II atoms, which are at the corners of the cube and are at

√
3/2 times the lattice

constant from N. An Fe nucleus at these sites ‘sees’ different surroundings, de-
pending whether it sits on site I or II. Therefore, different magnetic fields at this
nucleus can be expected. The point symmetry groups for both sites are listed
in Tab. 1. Furthermore, orientation of the magnetic moments of the Fe-atoms
may further reduce the symmetry by the spin-orbit coupling. If the direction of
ferromagnetic alignment is (001), then for two of the six Fe-I atoms the two N-
neighbours lie along the magnetic moment direction (Fe-Ia), while for the other
four Fe-I the two N-neighbours are connected by a line that is perpendicular
to the moment direction (Fe-Ib). If, on the other hand, the magnetic moments
would point along the (111) direction, then all six Fe-I atoms remain equivalent.

As can be seen in Tab. 1, whenever the direction of the moments is taken
into account, the point groups of the different Fe-sites are noncubic. As a con-
sequence, there will be orbital and spin dipolar contributions to the hyperfine
field, and these contributions can be different for each inequivalent Fe-site.
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crystallography only Pm3m (221)
Fe-I 4/mmm
Fe-II m3m

moments ‖ (001) P4/mmm (123)
Fe-Ia 4/mmm
Fe-Ib mmm
Fe-II 4/mmm

moments ‖ (111) R3m (166)
Fe-I 2/m
Fe-II 3m1

Table 1: Space groups and point groups for Fe4N with different
orientations of the magnetic moments of Fe.

A Mössbauer experiment21 on Fe4N 22 shows 3 inequivalent sites. This is con-
sistent with an orientation of the magnetic moments along the (001) direction, a
conclusion which is supported by transverse Magneto-Optical Kerr Effect exper-
iments (‘transverse MOKE’). The electric-field gradient plays a role in this story
as well, and we will therefore come back to this example in Hyperfinecourse A:
electric quadrupole interaction.

Fig. 8 lists which sites have cubic or non-cubic symmetry, when considering the
chemical symmetry only or including magnetic symmetries:

Figure 8: Different directions and their symmetries.

21Mössbauer Spectroscopy is an experimental method that will be discussed in the second
part of this book.

22 J.L. Costa-Krämer, D.M. Borsa, J.M. Garćıa-Mart́ın, M.S. Mart́ın-González, D.O.
Boerma and F. Briones, Physical Review B 69 (2004) 144402
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Direction Fermi contact hff
Fe-I -29.7

Fe-IIa -21.0
Fe-IIb -21.1

Direction orbital hff
Fe-I 3.7

Fe-IIa 0.4
Fe-IIb 2.7

Direction dipolar hff
Fe-I 0.0

Fe-IIa 3.0
Fe-IIb -6.3

Table 2: Values of the different magnetic HFF contributions for
different directions and different contributions.

When using figure 5 and table 2 side by side, one can see the effects of the
symmetries (chemical and magnetic) on the values of the different HFF contri-
butions.

5.2 The HFF of impurities in bcc Fe

Take the HFF of an Fe atom in bcc-Fe. What would happen with this field if one
Fe atom in the entire crystal is replaced by an atom of another element? The
nucleus of this other element will see an entirely different electronic surrounding
then the Fe nucleus did: instead of the 26 electrons of Fe, it is surrounded by
Z electrons (Z=1-100) of this new element. The valence electrons among them
will make bonds with the surrounding Fe host lattice. These valence electrons
are not necessarily 4s3d-electrons as for Fe: s-, sp- and sdf-electrons are possible
as well, with different principal quantum numbers (1s-7s, 2s2p-6s6p, 4s3d-6s5d,
6s5d4f-7s6d5f). This will result in a variety of types of bonds, each with their
own characteristic consequences for the hyperfine fields (Fig. 9). To name a few:

• Up to about Xe, the Fermi contact field is by far the major contribution
to the total hyperfine field. For heavier elements, orbital and spin dipolar
contributions can become important as well (spin-obit coupling!). For
lanthanides and actinides, the orbital contribution from 4f or 5f electrons
is overwhelmingly dominant.

• The Fermi contact contribution is negative in the beginning of an sp-
series, and much larger and positive at the end of it. This effect can
be understood23 through the exchange interaction between the impurity-s
and Fe-3d electrons.

23H. Akai, M. Akai, S. Blügel, R. Zeller, and P.H. Dederichs, Journal of Magnetism and
Magnetic Materials 45 (1984) 291, V. Bellini, S. Cottenier, M. Çakmak, F. Manghi and
M. Rots, Physical Review B 70 (2004) 155419.
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Figure 9: Experimental hyperfine fields for (a) all spd-elements,
and (b) all lanthanides, always as substitutional impurities in bcc-
Fe. Mind the difference in the vertical scales between (a) and
(b). Not for all elements experimental data are available. Some
of the measured values are very accurate, others carry large er-
ror bars (not shown). Only in a minority of cases the sign is
experimentally determined, the signs shown in these pictures are
often guessed from systematics. The source of (a) is N. Severijns,
J. Wouters, J. Vanhaverbeke, W. Vanderpoorten and L. Vanneste,
Hyperfine Interactions 60 (1990) 889, (b) is taken from D. To-
rumba, S. Cottenier, V. Vanhoof and M. Rots. PRB 74 (2006)
014409 (https://dx.doi.org/10.1103/PhysRevB.74.014409) .
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• The Fermi contact field at the end of the sp-series becomes larger if one
moves down along a column in the periodic table. This is due to the
Z-dependence of the s-electron penetration in the nucleus: while moving
down a column, the spin-polarization is more or less constant, but due to
the Z-dependence the resulting contact field grows.

• While going through a d-series, the contact field in the second half of any
d-series is somewhat larger than in the first half, which is referred to as
an “S-shaped curve”. This “S” is a result of two effects: core-polarization
and the coupling between the impurity d-moment and the Fe-3d moment
of the host lattice. The d-moment of the impurity will induce a core Fermi
field that is strictly proportional to the magnitude of the d-moment, and
has the opposite sign. Also the total Fermi field (core+valence) will be
more or less proportional to this d-moment, still with the opposite sign.
The d-moment is almost exclusively a spin moment (due to quenching of
the orbital moment), and will therefore be largest in the middle of the
d-series. For the first half of a d-series, the impurity d-moment will couple
antiparallelly24 to the Fe-3d moment. The sign of the impurity moment
is therefore negative, the sign of the Fermi field is positive, and this will
(in absolute value) reduce the negative Fermi field from the sp-electrons
(which is there since d-elements have the same sp-configuration as early
sp-elements). In the second half of a d-series, the coupling is parallel: now
the sp-contribution to the Fermi field and the core polarization due to the
impurity d-electrons will have the same negative sign, and the absolute
value of the total field will therefore be larger (=more negative).

The Z-dependence of the impurity hyperfine fields in an Fe host lattice form an
intriguing case study in condensed matter physics. Either when going through a
period or through a group of the periodic table, the systematics of these impu-
rity hyperfine fields illustrate basic concepts about electronic bonding in solids.
Measuring these hyperfine fields requires a variety of specialized experimental
methods, and gathering the data shown in Fig. 9 took 30 years of efforts by
many research groups. Knowledge of the values of these hyperfine fields is of
practical importance for the determination of nuclear magnetic moments, for
which the interaction with strong magnetic fields – such as the hyperfine fields
– is needed. This experimental data set has also been an important testing
ground for ab initio calculations, which are now able to reproduce the values
and – even more important – to explain the physical mechanisms behind these
observed hyperfine fields25.

24See the earlier reference to H. Akai (1984)
25M. Akai, H, Akai and J. Kanamori, Journal of the Physical Society of Japan 54 (1985)

4246, T. Korhonen, A. Settles, N. Papanikolaou, R. Zeller and P.H. Dederichs, Physical Re-
view B 62 (2000) 452, S. Cottenier and H. Haas, Physical Review B 62 (2000) 461, D. To-
rumba, S. Cottenier and M. Rots, [submitted to PRB].
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6 An extended nucleus (Bohr-Weisskopf effect)

It has been pointed out in section 3.5.3 that the Fermi contact field is indepen-
dent of nuclear properties. This would lead for two isotopes with the same ~µI to
an identical interaction energy, independent of how the moment is distributed
over the nuclear volume. Clearly, this is in contradiction with intuition: the
electrons that penetrate the nuclear volume should somehow be affected by the
details of the nuclear moment distribution. In this section, we will show more
precisely how this is visible in experiments. We will not derive quantitative
formulae, however, as this would lead us too deep into nuclear theory.

An extended nucleus has its dipole moment distributed over some volume of
space. The interaction energy for a nuclear dipole moment of an extended nu-
cleus and the magnetic hyperfine field is written as an extension of equation 13
as:

Emag = −
∫
nuc

~Bhf · d~µI (79)

where the integral is taken over the nuclear volume. If ~Bhf is constant over
the nuclear volume, it can be taken out of the integral and we find equation 13
again. But in general, ~Bhf is not constant. For example, |ψe, ↑(~r) |2 for an

s-electron is maximum at ~r = ~0 and drops for larger ~r. If the nucleus is rather
large (i.e. for large Z), the drop becomes appreciable and the contact hyper-
fine field might vary over the nuclear volume. One can therefore expect that
experimental hyperfine fields will deviate somewhat from the formulae we calcu-
lated above, especially in heavy nuclei. However, for heavy nuclei a relativistic
treatment is more appropriate, and therefore most deviations will be due to our
non-relativistic approach rather than to the extended nucleus26.

An experimentally more important influence of the nuclear size occurs when
the distribution of the magnetic moment is different for different isotopes of the
same element. Two different isotopes will have in general two different nuclear
magnetic moments ~µI1 and ~µI2. If one is able to bring both types of atoms in a
situation where no hyperfine field is present, one can determine the ratio of the
magnetic moments experimentally as follows. Apply a homogeneous external
magnetic field. This will be constant over the nuclear volume and thus ~Bhf can
be extracted from the integral in equation 79. Provided one can measure the
energy associated with the hyperfine interaction27 (we will see methods for this

26In a correct relativistic treatment, it turns out that the integration in equation 79 has
to be done over a volume larger than the nuclear volume. Its radius r is one half of the

Thomson radius ( r = rT
2

= Z e2

2me c2
, which is roughly 10 times larger than the nuclear

radius r = r0 A
1
3 (r0 = 1.4 ·10−15 m). (see S. Blügel, H. Akai, R. Zeller and P. H. Dederichs,

Physical Review B 35 (1987) 3271)
27Although there is no internal hyperfine field, we call the interaction of the nuclear mag-

netic moment with the externally applied magnetic field also a hyperfine interaction.
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in the second part of this course), the ratio ~µI1/~µI2 is known:

E1

E2
=

~µI1
~µI2

(80)

because the constant field at the nucleus is the same applied field.

The situation becomes different when an internal hyperfine field is present in
both measurements. Then the effective ~B at the nucleus (hyperfine field and
possibly an applied field) is not constant and now the extendedness of the nuclei
of both isotopes will play a role. The ratio between both measured energies will
be:

E1

E2
=

~µI1
~µI2

(1 + ∆) (81)

where ∆ is a small correction factor due to the extendedness of the the nuclei.
One calls ∆ the hyperfine anomaly, and the fact that it can be different from
zero is called the Bohr-Weisskopf effect28. Experimentally determined hyper-
fine anomalies are below 2%, and are highest in heavy (and hence large) nuclei
where the s-electrons can spend an appreciable time inside the nucleus. In very
light nuclei an apparent hyperfine anomaly can seem to be present, which is due
however to the quantummechanical zero-point motion of the nucleus.

One could attribute the Bohr-Weisskopf effect to an extra field that is gen-
erated at the nucleus, on top of the Fermi contact field. That extra field – let
us call it the Bohr-Weisskopf field – is zero for a point nucleus, and depends
on how the nuclear magnetic moment is distributed over the nuclear volume.
Formally, we can write the interaction energy due to the size-dependent dipole
term as:

Ejj (1)
sz = − ~µI · ~BFermi − ~µI · ~BBW [~µI(~r)] (82)

where ~BBW is a functional of the magnetic moment distribution. (Look back

at Hyperfinecourse A: a quantum version Fig. 1 to put ~BFermi and ~BBW in
relation with the other interactions.)

Because ∆ depends on the detailed distribution of the nuclear magnetic mo-
ment, it is sensitive to for instance the ratio of orbital to spin contribution to
the moment. ∆-measurements can therefore be used to test nuclear models.

28See S. Büttgenbach, Hyperfine Interactions 20 (1984) 1-64 for a detailed review.
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1 From toy model to quantum physics

The writer of this document didn’t think there was more background to add in
addition to the course video about this topic. Writing about what is discussed
in the video would be a literal translation from video to text, and this is not the
purpose of these documents. For additional background on this video, please
read https://biblio.ugent.be/publication/2988716/file/2988720.pdf. This is the
paper from where said toy model originates and is writen by K. Rose and S. Cot-
tenier (the lecturer of this course). The paper is free to download for everybody
with a UGent account.
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2 Quadrupole operator

As developed in Hyperfinecourse A: quantum version (equation 31), the leading
correction term in the hamiltonian for the charge-charge interaction is:

Ĥ1 = Ĥqq = − e2NZ

5ε0

(
1

r3
e

Y 2(θe, φe)

)
·
(
r2
n Y

2(θn, φn)
)

(1)

In first order perturbation theory, we have to evaluate this in the eigenstates∣∣∣I ⊗ ψ(0)
e

〉
of the monopole hamiltonian Ĥ0 = T̂n + Ûnn + Ĥ0:

Eqq = −
〈
ψ(0)
e ⊗ I

∣∣∣ e2NZ

5ε0

(
1

r3
e

Y 2(θe, φe)

)
·
(
r2
n Y

2(θn, φn)
) ∣∣∣I ⊗ ψ(0)

e

〉
(2)

We do not consider charge-charge overlap, therefore we can separate the expres-
sion into:

E(2)
qq = 〈I| sQ̂(2)

sh |I〉 ·
〈
ψ(0)
e

∣∣∣ sV̂ (2)
sh

∣∣∣ψ(0)
e

〉
(3)

where we defined the nuclear electric quadrupole moment tensor operator (di-
mension Cm2 or electron barn (eb))

Q̂2
q(~rn) = eZ

√
4π

5
r2
n Y

2
q (θn, φn) (4)

which operates on the nuclear space, and the electric quadrupole field tensor
operator (or electric-field gradient tensor operator, dimension V/m2)

V̂ 2
q (~re) = − eN√

20π ε0

1

r3
e

Y 2
q (θe, φe) (5)

which operates on the electron space.

Let us not forget that expression 3 is a matrix. More precisely the matrix
for the degenerate case of first order perturbation. It gives us information of
the behaviour of the nucleus in the presence of the electric field gradient from
the electrons.
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2.1 The electric-field gradient operator

The matrix on the right in equation 3 is a tensor of rank two. It is symmetric
and traceless and can therefore be described by 5 numbers. These 5 values can
be calculated via ab initio code (which we do not discuss here), we will consider
these 5 values as known. The 5 values depend on the choice of our axis system.

Explicit expressions for the components of the cartesian forms of Q
(2)
sh and V

(2)
sh

can be found by making the substitutions Hyperfinecourse A: quantum version
(equation 17-21) in:

E
(2)
pot =

1

6

∫
1

∫
2

 3x2
1 − r2

1 3x1y1 3x1z1

3x1y1 3y2
1 − r2

1 3y1z1

3x1z1 3y1z1 3z2
1 − r2

1

 · 1

r5
2

 3x2
2 − r2

2 3x2y2 3x2z2

3x2y2 3y2
2 − r2

2 3y2z2

3x2z2 3y2z2 3z2
2 − r2

2

 d~r1d~r2

(6)

or in (first dot product):

E
(2)
pot =

1

6

 {3x2
1

}
−
{
r2
1

}
{3x1y1} {3x1z1}

{3y1x1}
{

3y2
1

}
−
{
r2
1

}
{3y1z1}

{3z1x1} {3z1y1}
{

3z2
1

}
−
{
r2
1

}
 ·



∂2V2(~0)
∂x2

1
− ∆V2(~0)

3
∂2V2(~0)
∂y1∂x1

∂2V2(~0)
∂z1∂x1

∂2V2(~0)
∂x1∂y1

∂2V2(~0)
∂y21

− ∆V2(~0)
3

∂2V2(~0)
∂z1∂y1

∂2V2(~0)
∂x1∂z1

∂2f(~0)
∂y1∂z1

∂2V2(~0)
∂z21

− ∆V2(~0)
3

 +

1

6

 {r2
1

}
0 0

0
{
r2
1

}
0

0 0
{
r2
1

}
 ·


∆V2(~0)
3 0 0

0 ∆V2(~0)
3 0

0 0 ∆V2(~0)
3

 (7)

Using either expressions produces identical results only if there is no electron
penetration in the nucleus. That was to be expected, as equation 4 was derived
for the situation without penetration. The more general result obtained by
equation 5 is:

V̂ij = − eN

4πε0

3xiexje − r3
eδij

r5
e

− ρe(~0)

3ε0
δij (8)

The result for the quadrupole moment tensor does not depend on penetration
being present or not:

Q̂ij = eZ
(
3xinxjn − r3

nδij
)

(9)

If we note
〈

Ψ
(0)
e

∣∣∣ V̂ij ∣∣∣Ψ(0)
e

〉
≡ Vij , we can express the matrix elements of V̂ 2

as follows: 〈
ψ(0)
e

∣∣∣ V̂ 2
0

∣∣∣ψ(0)
e

〉
=

1

2
Vzz
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〈
ψ(0)
e

∣∣∣ V̂ 2
±1

∣∣∣ψ(0)
e

〉
= ∓ 1√

6
(Vxz ± Vyz) (10)〈

ψ(0)
e

∣∣∣ V̂ 2
±2

∣∣∣ψ(0)
e

〉
=

1

2
√

6
(Vxx − Vyy ± iVxy)

These matrix elements can be considerably simplified if we work in a principal
axis system (PAS) for the electric-field gradient. For a crystalline solid this is
something meaningful, as the lattice breaks the isotropy of space and provides
special directions relative to which the PAS can be defined. The PAS is chosen
such that the electric-field gradient tensor1 at the point of the crystal we are
interested in (the nucleus of the considered atom) is as simple as possible.

2.2 Intermezzo: Principal axis system rank 2 tensor

A principal axis system for a spherical tensor of rank 2 is an axis system in which
the 3× 3-matrix of the cartesian form of this tensor is diagonal (for symmetric
matrices this is always possible). Once XYZ is rotated such that the matrix is
diagonal, the axes are renamed by convention such that |azz| ≥ |ayy| ≥ |axx|.
The cartesian form in the PAS is now: axx 0 0

0 ayy 0
0 0 azz

 (11)

The trace of matrix is invariant upon rotation of the axis system and therefore
remains zero. It means we have only 2 degrees of freedom in 11. Because there
are also 3 degrees of freedom needed to specify the PAS with respect to the
original XYZ (e.g. 3 Euler angles), we retain the 5 degrees of freedom expected
for a spherical tensor of rank 2. Using the foreseen relations between cartesian
and spherical components (Hyperfinecourse A: framework. Inverse relations of
equations 27 and 28), we see that the spherical components in the PAS are:

a2
0 =

1

2
azz

a2
±1 = 0 (12)

a2
±2 =

1

2
√

6
(axx − ayy)

Because a2
+2 = a2

−2 also in the spherical components only 2 apparent degrees of
freedom are left. Again because of the 3 degrees of freedom needed to specify
the PAS, we find back the 5 degrees of freedom which are needed.

〈
ψ(0)
e

∣∣∣ V̂ 2
0

∣∣∣ψ(0)
e

〉
=

1

2
Vzz

1Attention: not the tensor operator, which is something we cannot change (it is as it
is), but the electric-field gradient tensor itself, i.e. the expectation value of the electric-field
gradient tensor operator.
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〈
ψ(0)
e

∣∣∣ V̂ 2
±1

∣∣∣ψ(0)
e

〉
= 0 (13)〈

ψ(0)
e

∣∣∣ V̂ 2
±2

∣∣∣ψ(0)
e

〉
=

1

2
√

6
(Vxx − Vyy)

The 3 axes of the PAS are named such that |Vzz| ≥ |Vyy| ≥ |Vxx|. Be aware that

the PAS is dependent on
∣∣∣ψ(0)
e

〉
: it is not something universal, but depends on

the particular compound you examine! Because of the condition on the trace
of the cartesian form (traceless), only two degrees of freedom are left in 13. We
can write this explicitly by defining a parameter η:

η =
Vxx − Vyy

Vzz
(14)

which fulfills the relation 0 ≤ η ≤ 1. With this definition we can write the
spherical components in the PAS as:

〈
ψ(0)
e

∣∣∣ V̂ 2
0

∣∣∣ψ(0)
e

〉
=

1

2
Vzz〈

ψ(0)
e

∣∣∣ V̂ 2
±1

∣∣∣ψ(0)
e

〉
= 0 (15)〈

ψ(0)
e

∣∣∣ V̂ 2
±2

∣∣∣ψ(0)
e

〉
=

1

2
√

6
η Vzz

Only η and Vzz determine the electric-field gradient, indeed 2 degrees of free-
dom. The 3 other degrees of freedom expected for a spherical tensor of rank 2
are used to specify the PAS with respect to the original axis system, e.g. by 3
Euler angles. One calls η the asymmetry parameter of the electric-field gradi-
ent. The reason is that for η = 0 the xx- and yy-components of the cartesian
form are equal: the gradient of the electric field is the same in all directions in
the XY-plane, hence the electric-field gradient has axial symmetry about the
Z-axis2. The more η deviates from 0 and approaches 1, the more the gradient of
the electric field becomes stronger in the y-direction compared to the x-direction
(the gradient in the z-direction remains the strongest of course).

2This can be seen also in the spherical component: only V 2
0 is not zero, hence there is axial

symmetry.
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2.3 The nuclear electric quadrupole moment operator

Let us now look to the first term in equation 3. Again we are faced with the
problem that we do not know explicit expressions for the nuclear many-body
wave functions |I〉. As for the 3 components of the magnetic dipole operator,
we will transform the 5 components of the electric quadrupole moment operator
Q̂2
q(~rn) into expressions that involve an experimentally observable scalar – ‘the’

quadrupole moment Q – and operators for which we can calculate the matrix
elements in the |I〉 basis. They will depend on the (experimentally known)
value of I. In contrast to the magnetic case, the |I,m〉 will not be eigen states
of the hamiltonian, such that non-diagonal matrix elements will be present.
The transformation takes somewhat more effort than for the magnetic case,
and starts from the Wigner-Eckart theorem. This famous theorem states that
the matrix elements of all spherical tensors of rank n are proportional, because
they can be written as:

<I ′, m′I |Tnq | I, mI>= (−1)I
′−m′I

(
I ′ n I
−m′I q mI

)
<I ′ ||Tn|| I > (16)

(The so-called reduced matrix element < I ′ ||Tn|| I > is independent of m′I ,
mI and q, and the Wigner 3j-symbol between large parentheses has a close
relationship3 to the Clebsch-Gordan coefficients.) Indeed, the same type of
matrix element of a spherical tensor An of the same rank is:

<I ′, m′I |Anq | I, mI>= (−1)I
′−m′I

(
I ′ n I
−m′I q mI

)
<I ′ ||An|| I > (18)

and therefore

<I ′, m′I |Tnq | I, mI>

<I ′, m′I |Anq | I, mI>
=

<I ′ ||Tn|| I >
<I ′ ||An|| I >

= C (19)

with C a constant depending on I ′, I and n, but not on mI , m
′
I and q.

The tensor operators r2
n Y

2(θn, φn) and I2 Y 2(~I) can be shown to be both4

spherical tensor operators of rank 2. Applying equation 19 we get:

<I ′, m′I | r2
n Y

2(θn, φn) | I, mI>= C <I ′, m′I | I2 Y 2(~I) | I, mI> (20)

With this equation, we can write the matrix elements of Q̂2
q(~rn) in terms of

I2 Y 2(~I). But then we need explicit expressions for Y 2
q (~I). For q = 0 and with

3The exact relation is:(
j1 j2 j3
m1 m2 m3

)
= (−1)j1−j2−m3

1
√

2j3 + 1
(j1 j2m1m2 | j1 j2 j3m3) (17)

One often uses 3j-symbols instead of Clebsch-Gordan coefficients because the former have
nicer symmetry properties.

4Interpret the notation Y 2(~I) as follows: in Y 2(θn, φn) (or Y 2(~r)), θn and φn give the

direction of ~rn. Use therefore in Y 2(~I) as argument for Y 2 the angles which specify the

direction of ~I.
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θ and φ giving the direction of a position vector ~r, we can with cos θ = z/r write
Y 2

0 as5:

Y 2
0 (θ, φ) = Y 2

0 (~r) =
1

2

√
5

4π

(
3z2 − r2

r2

)
(23)

r2 Y 2
0 (~r) =

1

2

√
5

4π

(
3z2 − r2

)
(24)

x, y an z are the x-, y- and z-components of ~r. If we note the x-, y- and
z-components of ~I as Ix, Iy and Iz, we can by analogy write:

I2 Y 2
0 (~I) =

1

2

√
5

4π

(
3I2
z − I2

)
(25)

Show yourself that:

I2 Y 2
±1 = ∓

√
15

8π

1

2
(IzI± + I±Iz) (26)

I2 Y 2
±2 =

1

4

√
15

2π
I2
± (27)

The operators Î+ and Î− are defined in hyperfinecourse A: magnetic hyperfine
interaction (equations 16 and 17).

Our last task before having found the nuclear matrix elements, is to search
for the value of the proportionality constant C. First we define similarly the
observable quadrupole moment Q of the nucleus:

Q = Z <I, mI = I| 3z2 − r2| I, mI = I > (28)

= Z 2

√
4π

5
<I, I| r2

nY
2
0 (~r)| I, I > (29)

Note the difference between this definition (just a number) and the quadrupole
tensor (5 components). Following general practice, we define this observable
quadrupole moment in units of m2, and not in units of Cm2 as we did for the
quadrupole moment tensor (equation 4). Numerical values for Q are usually
given in barn (1 barn = 1 b = 10−28 m2, typical values are 0 - 100 b). The

corresponding unit for the tensor Q
(2)
q is the electron barn (eb)6.

5

Y 2
0 (θ, φ) =

√
5

4π

(
3

2
cos2 θ −

1

2

)
(21)

(22)

6Do not confuse the electron barn with the Coulomb barn (Cb), which is not used in
practice. 1 eb = 1.602 · 10−19 Cb = 1.602 · 10−47 Cm2.
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Apply now Wigner-Eckart to the definition of Q:

Q = Z 2

√
4π

5

(
I 2 I
−I 0 I

)
<I || r2

nY
2(~r)|| I > (30)

and hence:

<I || r2
nY

2(~r)|| I > =
Q

Z 2
√

4π
5

(
I 2 I
−I 0 I

) (31)

which expresses the reduced matrix element of r2
n Y

2( ~rn) as a function of ob-
servable quantities. Now apply Wigner-Eckart again, on the following matrix
element of the other operator:

<I, I| I2Y 2
0 (~I)| I, I >=

(
I 2 I
−I 0 I

)
<I || I2Y 2(~I)|| I > (32)

On the other hand, also this is true:

<I, I| I2Y 2
0 (~I)| I, I > =

1

2

√
5

4π
<I, I| 3I2

z − I2| I, I > (33)

=
1

2

√
5

4π
h̄2
(
3I2 − I(I + 1)

)
(34)

=
1

2

√
5

4π
h̄2 (I (2I − 1)) (35)

Combining 32 with 35 gives the reduced matrix element of I2 Y 2(~I), which
together with 31, 19 and 20 finally yields the desired constant:

C =
Q

Z h̄2 (I(2I − 1))
(36)

We can now finally express the quadrupole moment operator in terms of Q and
the operators Î2, Îz and Î±:

Q̂2
q =

√
4π

5

eQ

I (2I − 1) h̄2
~̂I

2

Y 2
q (~̂I) (37)

with ~̂I
2

Y 2
q (~̂I) given by equations 25 to 27.

All this enables us to write down explicitly the nuclear matrix elements:

<I, m′I |Q2
0 | I, mI>= (38)

1

2

eQ

I(2I − 1)

(
3m2 − I(I + 1)

)
δmI ,m′I

9



<I, m′I |Q2
±1 | I, mI>= (39)

∓ 1

2

√
3

2

eQ

I(2I − 1)

√
I(I + 1) − mI(mI ± 1) (2mI ± 1) δm′

I
,mI+1

<I, m′I |Q2
±2 | I, mI>= (40)

1

2

√
3

2

eQ

I(2I − 1)

√
(I(I + 1)−mI(mI ± 1)) (I(I + 1)− (mI ± 1)(mI ± 2)) δm′

I
,mI+2

The observable nuclear quadrupole moment Q as defined by equation 29 is
an experimentally accessible measure for the deviation from spherical symme-
try of the nucleus. We can make the observation that due to equations 20, 29
and 35, Q is zero for I = 0 and I = 1/2, which means that these nuclei are
always spherically symmetric. As a result, all nuclear matrix elements are zero
in these two cases, and the quadrupole hamiltonian will not yield any energy
contribution. The lowest spin for which a quadrupole contribution to the total
energy is observable is therefore I = 1. Similar arguments can be used to prove
that the lowest spin for which a hexadecapole moment can exist is I = 3/2.

2.4 Energy levels of the electric quadrupole hamiltonian
for solids

By inserting equations 37 and equations 15 into equation 3, we obtain the equiv-
alent of equation 31 in hyperfinecourse A: magnetic hyperfine interaction: a
Hamiltonian that describes the energy contribution due to the interaction be-
tween a specific electric-field gradient tensor (specified by Vzz , η and the orienta-
tion of its PAS with respect to the crystal) and the nuclear quadrupole moment
tensor, depending on the orientation of the latter with respect to the PAS:

Hnuc
qq =

eQVzz

4 I(2I − 1) h̄2

[
(3I2

z − I2) +
η

2
(I2

+ + I2
−)
]

(41)

This hamiltonian depends on the electric-field gradient through Vzz and η, and
on the spin of the nucleus through I. It also depends on the orientation of the
nucleus (mI), through Îz and Î2

±. As the unperturbed Hamiltonian T̂n + Ûnn +

Ĥ0 does not depend on mI , we should use first order perturbation theory for
the degenerate case. In contrast to the magnetic case, the matrix formed by
〈m′I , I|Hnuc

qq |I, mI〉 is not diagonal, due to the presence of Î±. Therefore, it
must be diagonalized in order to find the eigenvalues and eigenfunctions. The
only – and important – exception is when the electric-field gradient has axial
symmetry (η = 0). We examine now the eigenstates and eigenvalues of Hnuc

qq

with and without axial symmetry of the electric-field gradient.
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3 Case studies & symmetry

3.1 Analytical example 1: I = 3/2

We will search now explicit and analytical expressions for eigen values and
eigen functions of a non-axially symmetric quadrupole hamiltonian for the case
I = 3/2. These eigen states |N > are not the | I, mI >, but because the latter
form a basis the equality ∑

mI

| I, mI><I, mI | = 1 (42)

holds, and this we can use to decompose |N> in the | I, mI>-basis:

|N>=
∑
mI

<I, mI |N>︸ ︷︷ ︸
cmI

| I, mI> (43)

Our goal is to find the coefficients cmI
7.

The non-zero matrix elements of Hnuc
qq in the | I, mI>-basis are8:

<±1

2
|Hnuc

qq | ±
1

2
> = −3

eQVzz
12

(44)

<±3

2
|Hnuc

qq | ±
3

2
> = +3

eQVzz
12

(45)

<±3

2
|Hnuc

qq | ∓
1

2
> =

√
3 η

eQVzz
12

(46)

The full matrix reads:

EQ =
eQVzz

12

[+ 3
2 + 1

2 − 1
2 − 3

2 ]
3 0

√
3 η 0

0 −3 0
√

3 η√
3 η 0 −3 0

0
√

3 η 0 3

 (47)

One can find now the eigen vectors and eigen values of this matrix in the usual
way. The secular equation would be a fourth order polynomial. We can reduce
the complexity however just by making a rearrangement of the basis states in
the following way:

EQ =
eQVzz

12

[+ 3
2 − 1

2 − 3
2 + 1

2 ]
3

√
3 η 0 0√

3 η −3 0 0

0 0 3
√

3 η

0 0
√

3 η −3

 (48)

7Clearly, if η = 0 all cmI are zero except for one which equals 1.
8We note for a while | I, mI> as |mI>.
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In this notation we clearly see that the new eigen states will be combinations of
either | 3

2 , + 3
2 > and | 3

2 , −
1
2 > only, or | 3

2 , −
3
2 > and | 3

2 , + 1
2 > only. The prob-

lem is reduced now to finding the eigenvalues and eigenstates of two identical
smaller matrices (the secular equations will be twice a second order polynomial
here). We will see soon that this kind of reduction is a general property. Verify
that both submatrices have as eigen values:

Ea = E± 3̃
2

=
eQVzz

4

√
1 +

η2

3
(49)

Eb = E± 1̃
2

= − eQVzz
4

√
1 +

η2

3
(50)

As both eigenvalues appear twice in the full 4 × 4-matrix, we say they have a
multiplicity of 2.

3.2 Analytical example 1: I = 1

By a suitable rearrangement, we can write the full matrix – similarly to equa-
tion 48 – as follows:

EQ =
eQVzz

4

[+1 −1 0] 1 η 0
η 1 0
0 0 −2

 (51)

We immediately recognizes an eigenvalue E0̃ which is identical to the eigenvalue
EmI=0 for the case of axial symmetry, and which does not depend on η. The
eigen state belonging to E0̃ is identical to | 0>:

E0̃ = − eQVzz
2

| 0̃>= | 0> (52)

Non-axial symmetry will therefore not change this state.

The eigenvalues of the 2× 2 submatrix do depend on η:

E± =
eQVzz

4
(1± η) (53)

| ±> =
1√
2

(|+ 1> ± | − 1>) (54)

The difference

E+ − E− =
eQVzz

2
η (55)

is linear in η.
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3.3 Symmetry properties and classes

We observe the following two facts:

• The expectation values of | I, ±mI > are identical under Hnuc
qq . Indeed,

the following symmetry relations are valid:

<I, mI + 2| I2
+| I,mI> = <I, −mI − 2| I2

−| I,−mI> (56)

<I, mI | 3I2
z − I2| I, mI> = <I, −mI | 3I2

z − I2| I, −mI> (57)

and therefore:

<I, mI |Hnuc
qq | I, mI> = <I, −mI |Hnuc

qq | I, −mI> (58)

• Because Hnuc
qq connects only states with ∆mI = 0 and ∆mI = ±2, the

states can be divided in 2 classes, such that no state of one class can ever
be connected to a state of the other class. The situation is different for
integer and half integer spin:

– integer spin:

Class 1 : mI = even (59)

Class 2 : mI = odd (60)

– half integer spin

Class 1 : mI = −I, −I + 2, . . . , +
1

2
, +

5

2
, . . . , I − 1 (61)

Class 2 : mI = −I + 1, −I + 3, . . . , −1

2
, +

3

2
, . . . ,+I(62)

The existence of these two classes means that it is always possible to rearrange
the eigenstates in such a way that Hnuc

qq is in block form, because the block
form explicitly shows that only states belonging to the same class can be mixed.
In our two examples above, we did indeed observe that this was possible. The
situation is qualitatively different however for integer and half integer spin:

half integer spin: The number of states in both classes is the same, the two
submatrices have therefore the same dimension. Even better, by virtue of
the symmetry properties 56 and 57, both submatrices are identical9 The
states |mI > and | −mI > play exactly the same role, each for their one
submatrix.

Consider now an eigenstate |N1> of Hnuc
qq . It must be built from states

|mI> belonging to one and the same class, and according to equation 43
the coefficients cmI with mI belonging to the other class are zero. For half

9You can convince yourself about this by looking at 48, and by making the matrix for
I = 5/2. It is not necessary to write down explicit matrix elements, just use 56 and 57 to
identify identical ones.
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integer spin, mI and −mI belong to different classes. Therefore, if cN1
mI

appears in the development of |N1>, cN1
−mI must be zero. But because the

two submatrices are identical and because | ±mI > play the same role,
there must exist an eigenstate |N2> of Hnuc

qq built from the corresponding

states of the other class, with the same coefficients: cN2
−mI = cN1

mI and

cN2
mI = 0 = cN1

−mI .

Because |N1 > and |N2 > are eigenstates of identical submatrices, they
must have identical eigenvalues (-energies) and are therefore degenerate.
This reasoning does not depends on the value of η, and we can con-
clude: the eigenstates of Hnuc

qq for half integer I are two-fold degenerate
(Kramers-degeneracy). The degeneracy which was present for axial sym-
metry is never lifted for half integer spin.

integer spin: In this case, there will always be a different number of states
in each class. The two submatrices will have a different dimension and
can hence never be the identical. The states | ±mI > now belong to the
same class. Therefore there is no reason why they must lead to degenerate
states (although they still can do so). In general, the ±mI -degeneracy will
be lifted for integer spin.

If I becomes larger, the dimension of the submatrices grows and hence also the
degree of the secular equation. From I = 4 onwards, one deals with secular
equations of the fifth degree and higher. It is well known from algebra that
only for polynomials up to the fourth degree analytical formulae for their roots
exist. For higher orders numerical procedures are the only possibility. This
means that I = 7/2 is the highest spin for which the eigenvalues can be given
analytically (although already from I = 5/2 onwards the analytical solution
becomes quite involved). In fig. 1 the eigenvalues of Hnuc

qq (found either analyt-
ically or numerically) for some values of I are given as a function of η. Note the
Kramers degeneracy for half integer spin, and the fast lifting of degeneracy for
mI = ±1 (remember it was present already in first order perturbation theory!).
The larger |mI |, the higher η needs to be in order to produce a sufficiently large
splitting.

One can compare these pictures of fig. 1 to fig. 2 of the gravitational example.
There all possible orientations of the dumb-bell (= nucleus) were allowed. In the
quantummechanical case only a limited number of orientations remains, which
means that we must select a discrete number of energies from the continuous
range of fig. 2.
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Figure 1: Quadrupole splittings for half integer (top, 7/2, 5/2,
9/2) and integer (bottom, 2, 3, 4) spins. The vertical energy axis
is in units of eQVzz/I(2I − 1), while the horizontal axis scans all
possible values of the asymmetry parameter η (0→ 1).

Figure 2: See hyperfinecourse A: framework, Figure 9
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3.4 Symmetry properties of the electric-field gradient

For the magnetic hyperfine field we were able to identify where in a crystal such a
field can exist and what will be its direction, just by using symmetry arguments.
In the present section we will show how the crystallographic symmetry can be
used to identify sites where an electric-field gradient exists, and what is the
direction of the Z-axis of its PAS.

3.5 Theorem 1: an n-fold rotation axis

Consider a spherical tensor of rank 2 V 2 in an axis system S1. Its 5 compo-
nents V 2

q ′(S1) are related to the component V 2
q (S2) in an axis system S2 in the

following way:

V 2
q (S2) =

∑
q ′

D
(2)
q ′q (α, β, γ)V 2

q ′(S1) (63)

The quantities D
(2)
q ′q (α, β, γ) are components of the Wigner rotation matrix of

dimension 2 · 2 + 1 which can be found in tables. The angles α, β and γ are the
Euler angles which specify S2 with respect to S1.

Consider now a position in a crystal of whom the point group contains an n-fold
rotation axis. Imagine we know the 5 electric field gradient components in an
axis system S1 with its z-axis along the n-fold axis (n is a positive integer).
The components in an axis system S2 which is obtained by rotating S1 over an
angle 2π/n about the z-axis will be identical to the ones in S1:

V 2
q (S2) =

∑
q ′

D
(2)
q ′q

(
α =

2π

n
, 0, 0

)
V 2
q ′(S1) = V 2

q (S1) (64)

Because of the following property of the Wigner rotation matrix elements:

D
(2)
q ′q (α, 0, 0) = e−iqα δq ′q (65)

we find
e−iq

2π
n V 2

q (S1) = V 2
q (S1) or e−iq

2π
n = 1 (66)

and therefore
q = nk k = 0, ±1, ±2, ±3, . . . (67)

This leads to the following consequences:

• A 1-fold symmetry axis (n = 1)

Due to 67 with k = 0, ±1 and ±2 all 5 components of the electric-field
gradient tensor can be obtained.

• A 2-fold symmetry axis (n = 2)

Now only k = 0 and ±1 lead to the allowed q-values 0 and ±2. The
±1 components are missing. According to equations 13 or 15, the 2-fold
rotation axis might be chosen as the z-axis of a PAS.
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• A ‘3 or more’-fold rotation axis (n = 3, 4 or 6)

Here only k = 0 leads to an allowed q = 0, the other components are
missing. According to equation 15 the n-fold rotation axis can be chosen as
the z-axis of a PAS in which the electric-field gradient is axially symmetric
(η = 0).

We can summarize our first symmetry criterion as follows: if an electric-field
gradient can exist at a given position of which the point group contains at least
a 3-fold rotation axis, it will be axially symmetric about that axis. Note that the
proof does not use any properties of the lattice symmetry (space group), only of
the point group. This theorem is therefore valid also for atoms and molecules
(in the latter case also 5-fold and (n ≥ 6)-fold rotation axes are possible).

With this theorem we can finally understand the gravitational examples from
section 3 from hyperfinecourse A: framework. The axis system chosen for the
double ring was found in equation 57 (hyperfinecourse A: framework) to be
a PAS. Indeed, the z-axis is an n-fold rotation axis with n = ∞, and must
therefore according to our theorem be the z-axis of a PAS.

3.6 Theorem 2: a cubic environment

A second theorem is this one: whenever the point group contains more than 2
distinct (n ≥ 3)-fold rotation axes, the electric-field gradient at the center of
the point group is zero. A proof valid for molecules and solids goes as follows:
according to the first theorem, both rotation axes specify a PAS in which the
field gradient is axially symmetric. Only the V 2

0 -component can be different
from zero in both axis systems, and according to equations 64 and 66 the value
of V 2

0 is the same in both systems10. As there is freedom to choose the X-
and Y-axes in both systems, the relation between both non-zero components is
according to 63:

V 2
0 (S1) = D

(2)
00 (0, β, 0)V 2

0 (S2) V 2
0 (S1) = V 2

0 (S2) (68)

with the following explicit expression for the Wigner rotation matrix element
(P2(x) is the second order Legendre polynomial):

D
(2)
00 (0, β, 0) = P2(cosβ) =

3 cos2 β − 1

2
(69)

Equation 68 must hold for any value of V 2
0 and any value of β. This is possible

only if V 2
0 (S1) = V 2

0 (S2) = 0, which makes the electric-field gradient zero.

When we restrict ourselves to crystalline solids, only the cubic point group
contains the 2 required high-symmetry axes. Five different cubic point groups
exist:

10The same conclusion can be obtained by the cartesian form: because of the PAS, both
3 × 3-matrices are diagonal. They must have the same eigenvalues and |Vzz | must be the
largest. Therefore both matrices must be equal.
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Figure 3: a) One of the three tetrahedral point groups. b) One of
the two octahedral point groups.

• Tetrahedral point groups: These contain four 3-fold axes (and three 2-fold
axes). There are three tetrahedral point groups: 23, 4̄3m and m3̄ (T , Td
and Th respectively in Schönfließnotation). An example of 4̄3m is drawn
in fig. 3-a.

• Octahedral point groups: These contain four 3-fold axes and three 4-fold
axes. There are two species: 432 and m3̄m (O and Oh). An example of
432 is drawn in fig. 3-b.

In molecules also other point groups with the required symmetries can exist.

The inverse of the second theorem is not valid: if the field gradient appears
to be zero, this does not necessarily imply the existence of two (n ≥ 3)-fold
axes. An example of this situation is the the double ring of section 3 from
hyperfinecourse A: framework with

√
2R = h: an∞-fold axis and lots of 2-fold

axes are present, but no others. However, such situations will occur only in
molecules, not in solids.
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Figure 4: Body centered tetragonal (bct) crystal structure (a =
b 6= c).

3.7 Examples of electric-field gradients in solids

3.7.1 The EFG in bct-In

At room temperature, pure In is a silver-grey, soft metal. It has a body-centered
tetragonal lattice structure (space group I4/mmm, Fig. 4), with lattice constants
a=b=3.2523 Å and c=4.9461 Å. All atoms in this structure are equivalent, and
their point group is 4/mmm. This point group is lower than cubic, hence we
expect an EFG at the In-site. There is a 4-fold rotation axis, hence the PAS of
the EFG will have its Z-axis parallel to the 4-fold rotation axis, and there will
be axial symmetry: the choice of X- and Y-axes does not matter.

3.7.2 The EFG of Fe in Fe4N

Considering crystallographic symmetry only, one Fe-site (Fe-I) in this compound
has a tetragonal point group, the other Fe-site (Fe-II) has a cubic point group.
An EFG at the Fe nucleus is possible at the Fe-I site only. The point group
of the Fe-I site is the same 4/mmm as in the bct-In example, hence we know
immediately that the PAS of the EFG will have its Z-axis along the 4-fold
rotation axis, and that there will be axial symmetry. In contrast to the case
of bct-In, however, the orientation of this PAS is not the same for all Fe-I
atoms (even though they are equivalent!). Indeed, for two Fe-I atoms the 4-fold
rotation axis is parallel to the c-axis of the crystal, for two others it is parallel
to the b-axis and for the remaining two parallel to the a-axis.
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4 Miscellaneous topics

4.1 Ab initio calculations of the EFG tensor

The magnetic field at a nucleus could be separated into local contributions
(Fermi, orbital and spin-dipolar contributions) and more distant contributions
(Lorentz, demagnetizing and atomic-dipolar contributions). Each of the local
contributions could stem from s-, p-, d- or f-electrons. For the electric-field gra-
dient, the number of contributions is much smaller. In a mathematical descrip-
tion that is tailored to the so-called LAPW-method, the EFG can be divided
into a contribution from electrons that ‘belong’11 to the atom that contains the
nucleus under consideration, and a contribution from more distant electrons12.
Numerical calculations show the latter contribution to be extremely small. If
we want to get more physical insight in the origin of an EFG, the only thing
left to do is to see how local s-, p-, d- and f-electrons contribute to this EFG of
local origin. For this purpose, let us write the principal component Vzz of the
EFG in terms of the electron charge density ρe(~r):

Vzz = <ψ(0)
e | V̂zz|ψ(0)

e > (70)

=
1

4π ε0

∫
ρe(~r)

3 cos2 θ − 1

r3
d~r (71)

It is understood that the origin of the axis system (r=0) is at the nucleus
of interest. Very close to the nucleus, where r is small, we can expect a large
contribution to Vzz provided ρ(~r) is sufficiently large. However, near the nucleus
the electron density is small. We could also expect the region further away
from the nucleus where the highest electron density is, to be contributing most.
There however 1/r3 is small. For a long time, it has been unclear which of
both regions yield the dominant contribution. Only after sufficiently accurate
ab initio methods became available, it could be shown that the region of small
r is absolutely dominant, so dominant that contributions from charges at other
atoms are irrelevant (see the discussion about the formulation in the LAPW
framework given above, and the reference to P. Blaha given there). To illustrate
this, first define the following function:

Vzz(r) =
1

4π ε0

∫ |~r|=r
|~r|=0

ρe(~r)
3 cos2 θ − 1

r3
d~r (72)

Obviously, in the limit of large r we find back the definition of Vzz:

lim
r→∞

Vzz(r) = Vzz (73)

11Where one can put the boundary between this atom and neighbouring atoms is not
obvious. In the LAPW-method an exact definition is used for this boundary. One should not
attribute physical meaning to this boundary, however.

12 P. Blaha, K. Schwarz, and P.H. Dederichs, Physical Review B 37 (1988) 2792
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Figure 5: Illustrating which regions in space contribute to Vzz.
First column: the function ρe(r) from the integrand in equation 72
(without 1/r3). Second column: similarly, but with the factor
1/r3. Third column: this function integrated up to r, which is
equation 72. The arrows indicate the full calculated Vzz, includ-
ing the “lattice contribution” from distant atoms.

If one plots Vzz(r) as a function of r, then in many cases the full value of Vzz
is obtained already for r ≈ 0.2 Å, a distance that is 10 times smaller than the
radius of a typical atom. This function is plot for several pure hcp materials in
Fig. 5, and except for the very light Be atom the EFG is indeed of very local
nature.

Some warning words are appropriate here. We just concluded that the EFG
is of very local nature. In the literature, one can find at many places statements
like “the EFG is a very local property that is determined only by the first few
neighbour shells of atoms”. This is a statement that is not entirely true13, and

13It is a statement grown under the influence of the obsolete point charge model that will
be discussed in the next section.
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certainly completely different from the conclusion we just arrived at. It is true
that the EFG is a very local property: only the charge density in region inside
the atom and very close to the nucleus determines the EFG. The properties of
this part of the charge density, however, are determined by wider environment
of the atom under consideration. Chemical bonds with its first nearest neigh-
bours will have an influence on this local charge density. Chemical bonds of
these neighbours with their respective neighbours will have an influence as well,
through their effect on the properties of the nearest neighbours which will influ-
ence the bonds with the original atom, and so on. In this way, the local charge
density near the nucleus contains information on what is chemically happening
in a region of several Ångstroms around the central atom, typically 5 shells of
neighbours. That is still ‘local’ compared to a macroscopic scale, but a differ-
ent kind of locality than the 0.2 Å (=deeply within an atom) involved in the
relation between charge density and Vzz. These two concepts are often confused.

Which are now the electrons that most contribute to Vzz? Ab initio calcu-
lations have shown14 that the integral 71 can be separated15 in an integral over
ρpe, ρ

d
e and ρfe . For spd-materials, the contribution due to the valence p-electrons

is often dominant, even for transition metals that do not have native valence p-
electrons. For lanthanides and actinides, the f-contribution becomes dominant
if the f-electrons are localized.

Interestingly, these calculations show how a very old, intuitive model to under-
stand the EFG – the Townes-Dailey approximation16 – has a sound, physical
basis. In the Townes-Dailey model, one makes a so-called ‘asymmetry count’
of the orbitals of a state, taking care of the symmetry of that state. For in-
stance, the p-orbitals consist of 3 mutually perpendicular lobes (px, py and pz,
see Fig. 6). In a crystal with axial symmetry along the z-axis, the occupation
of px and py will be identical, and different from the occupation of pz. If the
occupation of pz – call this nz – is smaller than the occupation of px or py) –
call this nx = ny – then the overall p charge density will be oblate (Fig. 6). In-
tuitively, this corresponds to a negative Vzz. The ‘asymmetry count’ for p-states
is defined as

∆p =
nx
2

+
ny
2
− nz (74)

and is also negative. Ab initio calculations have shown that there is a fairly
good proportionality between this asymmetry count (where the ni come from
calculations) and an accurately calculated p-contribution to Vzz. If there is
charge accumulation along the Z-axis (prolate charge density), then nz is larger

14See the earlier reference to P. Blaha (1988), and also S. Cottenier, V. Bellini, M. Çakmak,
F. Manghi and M. Rots, Physical Review B 70 (2004) 155418, and references therein.

15Here we simplify a bit. In a correct mathematical treatment, the density can be split
according to so-called Gaunt numbers, of which the densities with the p-p, d-d and f-f Gaunt
numbers have the dominant contributions. These p-p density can be related to the density
due to p-electrons, and therefore we note it here immediately as ρpe .

16C.H. Townes and B.P. Dailey, Journal of Chemical Physics 17 (1949) 782
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Figure 6: Schematic picture of p-orbitals. When the occupation
in the xy-plane is dominant, the overall p-charge distribution is
oblate. If p-charge accumulates along the z-axis, the overall p-
distribution is prolate.

than nx = ny, and ∆p is positive. This is in agreement with the positive Vzz
that is expected. For a cubic environment, nx = ny = nz, such that ∆p = 0,
which is consistent with Vzz = 0 (by symmetry).

For d-electrons as well an asymmetry exists, and it is defined as:

∆d = nxy + nx2−y2 −
1

2
nxz −

1

2
nyz − nz2 (75)

For many years, ab initio calculations that could sufficiently accurately solve
for Vzz were not available. How to extract physical meaning from the measured
EFG’s then? An attempt to classify experimental data was the point charge
model. The underlying assumptions of this model are:

• The key feature of the EFG is the contribution from localized charges
at (neighbouring) atomic sites (‘lattice EFG’). [We know meanwhile that
such a contribution is negligible.] If an assumption for the value of these
localized charges (point charges) are made, the EFG due to them can be
obtained by a simple summation (see further).

• This lattice EFG gets amplified by the electron orbital of the atom under
consideration, who get deformed under the influence of the lattice EFG.
For every element, the effect of this deformation can be expressed by a
single scaling parameter (Sternheimer factor). [We know meanwhile that
the hope for the existence of such a single parameter is unjustified: Nature
is much more complicated ]
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Although the point charge model is incorrect and obsolete, it has been used
a lot in the past and you should know how what it is about in order to un-
derstand the older literature. Below, the point charge model is explained in
more detail. A critical analysis of one the failures of this model – together with
the better ab initio interpretation – is given in S. Jalali Asadabadi, S. Cotte-
nier, H. Akbarzadeh, R. Saki and M. Rots, Physical Review B 66 (2002) 195010.

Consider the nucleus of an ion, the latter having initially a spherically symmet-
ric electron cloud (as a free ion). Put this ion at a site with lower-than-cubic
symmetry in a solid. Due to this low symmetry, the positions of the neighbour-
ing ions are such that they must generate an EFG at the nucleus of interest.
Because these neighbours are outside the electron cloud of the ion, we call the
principal component of this field gradient V ext

zz . The electron cloud of the con-
sidered atom makes bonds with the neighbours. It gets therefore deformed,
looses its spherical symmetry and takes the same symmetry as the neighbour-
hood has. This causes an extra field gradient at the nucleus with the same PAS
as the external contribution. We can hence write the total field gradient as the
external contribution times a factor:

Vzz = (1− γ∞)V ext
zz (76)

If γ∞ is zero, the own electron cloud is not deformed. In many cases γ∞ is
considerably larger then 1 and negative, which means a strong net amplification
of V ext

zz . For this reason, γ∞ is called the Sternheimer antishielding factor. It is
a property which depends only on the considered atom of ion, and reflects the
latter’s reaction to an external field gradient. A table with calculated values
(Hartree-Fock calculations) for a lot of ions can be found in F.D. Feiock and
W.R. Johnson, Physical Review 187 (1969) pp. 39. Some examples for impor-
tant atoms are: Fe: -5.244, Sn: -22.34, Cd: -29.27.

Often situations occur where a nonspherical charge distribution is present within
the electron cloud of the considered atom. In an ionic solid, insulator or semi-
conductor, this can happen for instance due to a not completely filled 4f-shell.
In metals it can be due to conduction electrons penetrating into the atomic
volume. In both cases this will yield an internal (to the atom) or local field gra-
dient with principal component V loc

zz . It will again take over the symmetry of
the existing (1− γ∞)V ext

zz and have therefore the same PAS. The other electrons
inside the atomic volume will be deformed by this internal charge distribution,
and change the original V loc

zz . Now the change is described by a parameter R,
which appears to be rather small ( -0.2 ≤ R ≤ +0.2), and the total principal
component becomes:

Vzz = (1− γ∞)V ext
zz + (1−R)V loc

zz (77)
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It is quite straightforward to get a meaningful number for V ext
zz . The neighboring

nuclei screened by their electron cloud will appear from a certain distance as
point charge ∆e, where ∆ is the extra number of electrons being at the ion. In
ionic solids, ∆ is an integer (positive or negative), in metals it is a fractional
number. From the result for the gravitational example, we obtain the electric-
field gradient tensor for a single point charge ∆e at a position ~r from the nucleus
(−Gm2 → ∆e/4πε0, ρ2(~r2) → δ(~r2 − ~r)) in cartesian coordinates17. Summing
over all ions in the crystal gives:

V ext =
e

4π ε0

∑
i

∆i

r3
i


3x2
i

r2
i

− 1 3xiyi
r2
i

3xizi
r2
i

3xiyi
r2
i

3y2i
r2
i

− 1 3yizi
r2
i

3xizi
r2
i

3yizi
r2
i

3z2i
r2
i

− 1

 (78)

It is of course not possible to extend the summation really to all ions in the crys-
tal. Usually one calculates first all the matrices due to the first nearest neigbors,
then of the second neighbor shell, and so on. As ri becomes larger, the contri-
butions become smaller and smaller, and the sum will converge. Convergence
is very slow however, because shells far away will usually contain many atoms.
Short-cuts exist to obtain with less effort (= faster convergence) the same final
matrix18, and for some types of lattices even analytical expressions exist19.

Anyway, after having found the matrix for V ext – in this context called also
often V latt , latt from lattice – one can find its PAS by doing a matrix diagonal-
ization. After suitably renaming the axes, one obtains finally a value for V ext

zz .
If one is interested only in the PAS and not in the magnitude of Vzz, then it is
sufficient to carry out the summation in 78 only over as many neighbors as is
needed to obtain the symmetry of the point group, and do the diagonalization
of this matrix.

Because γ∞ is known from tabulations, we have now a procedure to obtain
the external (or lattice) contribution to the electric-field gradient. Such a trans-
parent method does not exist for the local contribution however. Based upon
the then available experimental data, Raghavan et al.20 concluded in 1975 that

17Point charges cannot occur at the same position of the nucleus, the correction term with
ρe(~0) is therefore zero.

18F. W. De Wette, The Physical Review 123 (1961) p. 103, F. W. De Wette and G. E.
Schacher, The Physical Review 137 (1965) p. A78 and p. A92, and D. B. Dickmann and G.
E. Schacher, Journal of Computational Physics 2 (1967) p. 87.

19For instance, for the Cu-position in a AuCu3-type of structure, one can prove that

V ext = V latt =
e 8.67

4πε0 a30
(∆Au −∆Cu ) (79)

with a0 being the lattice constant. (G.P. Schwartz and D.A. Shirley, Hyperfine Interactions
3 (1977) 67)

20R. S. Raghavan, E. N. Kaufmann and P. Raghavan, Physical Review Letters 34(20) (1975)
p. 1280
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the local contribution in metals (here the local contribution is due to conduction
electrons) is proportional to the antishielded lattice contribution and has the
other sign, the universal proportionality constant −K being about -3:

(1−R)V loc
zz = Vzz − (1− γ∞)V latt

zz = −K (1− γ∞)V latt
zz (80)

and hence
Vzz = (1−K) (1− γ∞)V latt

zz (81)

This ‘universal correlation’ with the data set of Raghavan et al. is shown in
fig. 7-a. In later experiments21 many exceptions to this plot have been found
(for instance by Enrst et al.22, fig. 7-b), making the proportional behaviour far
less universal as was once thought. Fig. 7-c shows the available data set in 1983
(R. Vianden).

21See R. Vianden, Hyperfine Interactions 15/16 (1983) 189-201 for a discussion, and R.
Vianden, Hyperfine Interactions 35 (1987) 1079-1118 for a tabulation of many more electric-
field gradient measurements.

22H. Ernst, E. Hagn, and E. Zech, Physical Review B 19 (1979) 4460-4469
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Figure 7: Pictures of pretended correlations between the total
electric-field gradient and the point-charge lattice contribution
(with their original captions), with data sets available in 1979 [a):
Raghavan, b): Ernst] and 1983 [c): Vianden]. See text for detailed
references.
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4.2 Temperature dependence of the electric-field gradient

Up to now we did not mention temperature. In almost all cases, the electric-field
gradient lowers when the temperature raises. Fig. 8 shows Vzz as a function
of temperature for Cd(Cd), Sn(Cd), and Ru(Cd). The kind of temperature
dependence is not the same in all classes of materials however. Regular spd-
compounds follow a T 1.5-law:

Vzz(T ) = Vzz(0)
(
1−BT 1.5

)
(82)

There is no formal justification for the exponent 1.5 and actual values may differ
from 1.5 slightly. The factor B has the order of magnitude of 10−4−10−5K−1.5.
It is highly surprising that so many cases – equation 82 holds equally well for
pure compounds as for the field gradient on impurities – can be described by
such a simple formula, which contains only a single free parameter (Vzz(0) is
trivial).

In materials with f-electrons, the temperature dependence is linear:

Vzz(T ) = Vzz(0)
(
1−BT 1

)
(83)

Broad studies do not exist, but it seems this linear behaviour remains even if
the electric-field gradient is measured at a position where no f-atom sits, as the
field gradient on 111Cd on the Sn-position in USn3.

The final picture to understand these temperature dependences at a fundamen-
tal level has not yet been worked out. Of course, the field gradient must become
smaller if the lattice expands. This effect is too small however to explain the ob-
served temperature variation. Next, one could think about an electronic effect.
The higher the temperature is, the more electrons are thermally excited. The
bonds which were sharply defined at 0K become hence more and more blurred.
‘Blurred’ means that spherical symmetry of the electron cloud is more and more
restored, and the electric-field gradient will therefore become smaller. But the
temperatures needed for this to be an observable effect are orders of magnitude
higher than the temperature range of fig. 6-7***. The only remaining possibil-
ity is the influence of lattice vibrations (phonons), which indeed are important
in the range of 0 - 1000 K. The fact that for impurities in a host-lattice the ob-
served B correlates with the Debye-temperature of the host is an experimental
support for this. The final theory to describe Vzz(T ) will therefore have to deal
with phonons in an accurate way (An early and rather successful model for the
electron-phonon coupling can be found in P. Jena, Physical Review Letters 36
(1976) 418-421 and in D. R. Torgeson and F. Borsa, Physical Review Letters 37
(1976) 956-959. Other references can be found in E. N. Kaufmann and R. J.
Vianden, Review of Modern Physics 51(1) (1979) p. 161, in W. Witthuhn and
W. Engel in Hyperfine Interactions of Radioactive Nuclei, ed. J. Christiansen,
pp. 205-280, 1983, Springer-Verlag, ISBN 3-540-12110-2, in R. Vianden, Hy-
perfine Interactions 15/16 (1983) 189-201, and H. C. Verma and G. N. Rao,
Hyperfine Interactions 15/16 (1983) 207-210.).
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Figure 8: T-dependence of Vzz(T )=Vzz(0)(1-BTα) (solid lines are
fits through the experimental values) for Cd(Cd), Sm(Cd), and
Zr(Cd). Phys. Rev. B (2006) 144304
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5 Combined interaction

We are ready now to combine the results of this document and the previous one
and study the interaction between a nucleus and a magnetic field and electric-
field gradient that are present simultaneously. We will discuss the case of solids
only. The general solution of this problem is complex, and we will restrict
ourselves to a few manageable cases. Cases which are not treated are explicitly
mentioned, in order to indicate clearly what is missing here. An important
note to make is that a lot of steps use formulas not previously discussed23.
As the online course only goes briefly over this subject (and not in a strong
mathematical way whatsoever), it is more important to understand the different
cases than to follow the mathematics behind them.

5.1 General formulation

Consider a nucleus with angular momentum I ≥ 1, observable magnetic dipole
moment µ (or alternatively, g-factor g), and observable electric quadrupole mo-
ment Q. Both µ (or g) and Q can be either positive or negative. This nucleus is

inside a solid, and feels a magnetic field ~B(~0) and an electric-field gradient ~V (~0)
that are fixed with respect to the crystal lattice. The crystal is described in an
axis system that is fixed with respect to e.g. the experimental apparatus that is
used to study the nucleus, and is therefore sometimes called the LAB-system.
Our static ~B(~0) can be described in this LAB-system by 3 components Bx, By
and Bz. There will be a PAS in which ~B(~0) has only one non-zero component.

In order to specify ~V (~0) with respect to the LAB-system, 5 components are
needed. Equation 11 shows that also here a PAS can be chosen such that only 3
non-zero components remain (with only 2 degrees of freedom). The description

of ~B(~0) and ~V (~0) is simplest in their PAS, but these two PAS in general do not
coincide. We will have to choose one of them, and accept the complications for
the other interaction which we cannot describe in its PAS.

As we assume ~B(~0) and ~V (~0) to be known quantities, we can again formulate a
nuclear Hamiltonian. Diagonalization of the matrix of its matrix elements will
lead to the eigenvalues and eigenstates. The general nuclear magnetic Hamilto-
nian in an axis system not necessarily being the PAS associated with ~B(~0):

Ĥnuc
jj = − gIµN

h̄
~B(~0) · ~̂I (84)

The corresponding quadrupole hamiltonian we calculated up to now only in the
PAS of the field gradient, in equation 41. By equations 3, 37 and 25 to 27 we
can obtain the spherical form in a general axis system:

Ĥnuc
qq =

eQ

2I(2I − 1)h̄2

[(
3Î2
z − Î2

)
<V 2

0 >

23We are not talking about derivations but about e.g. certain transformation formulas.
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∓
√

3

2

(
Îz Î±1 + Î±1Îz

)
<V 2
±1> +

√
3

2
Î2
± <V

2
±2>

]
(85)

with
〈
V 2
q

〉
=
〈

Ψ
(0)
e

∣∣∣ V̂ 2
q

∣∣∣Ψ(0)
e

〉
.

The general problem is now to find the nuclear eigen states and eigen values of
Ĥnuc

jq = Ĥnuc
jj + Ĥnuc

qq . We will solve this problem in a few special cases.

6 Dominant quadrupole interaction

We first focus on the case where the quadrupole interaction is dominant. ‘Dom-
inant’ means that if both interactions would act alone, ∆Enuc

qq is much larger
than ∆Enuc

jj (equivalently: ω0 � ωL). It is a natural choice then to take
the PAS of the electric-field gradient as reference system. If exact calculations
would appear to be impossible, the magnetic interaction can be considered to
be a perturbation to the quadrupole interaction.

6.1 The collinear case

6.1.1 Axial symmetry

This is the most simple case, and can be solved exactly: ~B(~0) is parallel to the z-
axis of the PAS of the electric-field gradient, the latter being axially symmetric.
This z-axes of both PAS coincide, and for none of them the choice of x- and
y-axes matters, such that both PAS can be chosen to be identical. Under these
circumstances, 84 reduces to eq. 31 from hyperfinecourse A: magnetic hyperfine
interaction, and 85 to 41 with η = 0:

Ĥnuc
jq =

eQVzz

4 I(2I − 1) h̄2 (3Î2
z − Î2) − gIµN

h̄
B(~0) Îz (86)

This hamiltonian is already diagonal in the | I, mI>-basis, with eigenvalues:

Enuc
jq (mI) =

eQVzz
4 I(2I − 1)

(3m2
I − I(I + 1)) − gIµNBmI (87)

= h̄ωQ (3m2
I − I(I + 1)) + h̄ωLmI (88)

The energy level scheme for I = 5/2 is given in fig. 7-1*** for QVzz > 0 and
gIB < 0. This scheme inverts whenever QVzz or gIB changes sign. The ±mI

degeneracy from the quadrupole-only case is lifted.

Equation 87 is an exact solution, and does not depend on EM being small
with respect to EQ. It even holds equally well for the case with dominating
magnetic interaction.

Let us examine what happens if one increases B. For particular field strengths,
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some energy levels will coincide. From 87 you can derive that EQM (mI) =
EQM (m ′I) if:

ωL
ωQ

= − 3 (mI +m′I) (89)

Apparently, for a given ωQ several ωL exist for which this condition holds (fig.
7-2***). For instance, for the situation given in fig. 7-1***, the first coincidence
will obviously happen for the levels mI = −3/2 and mI = +1/2. This will
be if ωL/ωQ = 3. Such crossings of two levels are crucial for the Level Mixing
Resonance method, a method which is especially useful to measure hyperfine
interaction energies when combined interactions are present.

6.1.2 No axial symmetry

If ~B(~0) and ~V (~0) are collinear, but without axial symmetry for ~V (~0), we are
in a situation much similar to section 3.3 from hyperfinecourse A: magnetic
hyperfine interaction. We will have the complexity of the non-zero non-diagonal
elements, which are exactly the same however as in said section. Only the
diagonal elements are changed, due to an additional term from the magnetic
interaction. Finding the eigen values will proceed along the same scheme as
presented in said section. For half-integer I, if B is sufficiently small a Zeeman-
splitting of the degenerate ±mI levels will show up. For integer I, almost
degenerate levels will Zeeman-split too, and non-degenerate levels will change
their mutual distance a little (increase or decrease).

6.2 The non-collinear case

6.2.1 Axial symmetry

Now consider an axially symmetric quadrupole interaction, being much stronger
than a magnetic interaction and not collinear with it. The PAS of the mag-
netic hyperfine field can be specified with respect to the PAS of the electric-field
gradient by the Euler angles (α, β, γ). α is an orientation about the direction
of axial symmetry of the electric-field gradient. Due to this axial symmetry,
α should not matter and we can choose the X- and Y-axis of the electric-field
gradient PAS such that α = 0. Similarly, γ is a rotation about the direction
of the magnetic hyperfine field, which is always a direction of axial symmetry
because the hyperfine field is a vector. We can choose the X’- and Y’-axis of
the magnetic PAS such that γ = 0. Hence, a simplified set of Euler angles that
specifies the magnetic PAS with respect to the electric PAS is (0, β, 0).

We will work in the electric PAS, and therefore we should express the mag-
netic hyperfine field in the electric PAS. The latter plays the role of the ‘new’
axis system in the transformation, such that in order to transform, we should
know the Euler angles that specify the electric PAS with respect to the magnetic
PAS. These are (0, −β, 0). In the ‘old’ (magnetic) axis system, the cartesian
components of the magnetic hyperfine field are (0, 0, B). The corresponding
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spherical tensor that describes the hyperfine field in the magnetic PAS has only
one non-zero component: B1

0 = B. Three components in the electric PAS are:

B1
q (β) = D1

0q(0,−β, 0)B1
0 (90)

= (−1)q
√

4π

3
B Y 1

q (−β, 0) (91)

Explicit expressions are:

B1
0(β) = B cosβ (92)

B1
±1 = ∓ B√

2
sinβ (93)

The spherical form of the nuclear angular momentum operator ~̂I =
(
Îx, Îy, Îz

)
,

is :

Î1
0 = Îz (94)

Î1
±1 = ∓ 1√

2
Î± (95)

Working out the dot product in equation 84 but using spherical components,
we find the desired expression:

Hnuc
jj (β) = − gIµNB

h̄

(
1

2
sinβ

(
Î+ + Î−

)
+ cosβ Îz

)
(96)

The combined hamiltonian Hnuc
jq is not diagonal any more in the | I, mI> basis.

The non-zero matrix elements depend on β and are:

〈I, mI |Hnuc
jq (β) |I, mI〉 = h̄ωQ

(
3m2

I − I(I + 1)
)

+ h̄ωLmI cosβ (97)

〈I, mI |Hnuc
jq (β) |I, mI ± 1〉 =

h̄ωL
2

sinβ
√
I(I + 1)−mI(mI ± 1) (98)

Due to the off-diagonal matrix elements, the | I, mI>-states are no eigen states
any more. In our first order perturbation procedure where Hnuc

jq is the perturb-
ing Hamiltonian (with Vzz and B the small parameters) with respect to the
dominant monopole Hamiltonian, the following matrix must be diagonalized in
order to find the new eigen states (I = 5

2 as an example):

+ 5
2 + 3

2 + 1
2 −

1
2 −

3
2 −

5
2

qj j 0 0 0 0
j qj j 0 0 0
0 j qj j 0 0
0 0 j qj j 0
0 0 0 j qj j
0 0 0 0 j qj


(99)
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The symbol ‘qj’ indicates a contribution due to Hnuc
qq and Hnuc

jj simultaneously,
the symbol ‘j’ a contribution due to Hnuc

jj only.

If the quadrupole interaction is dominant, we can apply first order perturbation
theory a second time. We can take the monopole Hamiltonian plus Hnuc

qq as the
unperturbed Hamiltonian, and Hnuc

jj as the perturbation with B as the small
parameter (B � Vzz ). Under the unperturbed Hamiltonian, the ±mI states are
degerate: [

〈mI |Hnuc
jj |mI〉 〈mI |Hnuc

jj |−mI〉
〈−mI |Hnuc

jj |mI〉 〈−mI |Hnuc
jj |−mI〉

]
(100)

For mI = 5
2 and mI = 3

2 , this is a diagonal matrix: the eigenstates are un-
changed, and the degenerate eigenvalues split (their separation is 2h̄ωLmI cosβ).
For mI = 1

2 , the matrix is not diagonal:

h̄ωL
2

[
cosβ k sinβ
k sinβ − cosβ

]
(101)

with k =
√
I(I + 1) + 1

4 . It is left as an exercise to diagonalize this and find

the separation between the two levels.

Note finally that when ~B(~0) is perpendicular to the Z-axis of the PAS of the
quadrupole interaction and small, the energies in first order are unaffected, ex-
cept for mI = ± 1

2 .

6.2.2 No axial symmetry

We do not deal with the case of a dominant non-axially symmetric quadrupole
interaction combined with a non-collinear magnetic interaction. Note only that
now matrix elements with ∆mI = ±1 and ∆mI = ±2 are present in the
| I, mI>-basis.
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7 Dominant magnetic interaction

7.1 The collinear case

7.1.1 Axial symmetry

We already dealt with this case, as the axially symmetric quadrupole interaction
with collinear magnetic interaction was solved exactly, irrespective of the relative
strength of both interactions.

7.1.2 No axial symmetry

This will not be discussed.

7.2 The non-collinear case

7.2.1 Axial symmetry

If the Z-axis of the PAS of a small electric quadrupole interaction is not parallel
to the Z-axis of the PAS of a large magnetic interaction, we better take the
latter PAS as our reference frame, and express the quadrupole interaction in
this axis system. The magnetic hamiltonian of equation 84 simplifies to:

Ĥnuc
jj = − gIµN

h̄
B Îz (102)

while the quadrupole hamiltonian is given in 85. The magnetic PAS is our fi-
nal reference system here, and the orientation of the electric PAS with respect
to the magnetic PAS is specified by the Euler angles (α, β, γ). For the same
reasons as in section 6.2.1, the axes can be taken such that α and γ are zero,
without loosing generality24. We will not make this choice, however. We will
start out with general values for all three Euler angles, in order to demonstrate
that – with somewhat more work – the α- and γ-dependence will disappear
spontaneously from the equations.

First we transform the single non-zero component of the electric-field gradi-
ent tensor from its PAS to the magnetic PAS. In order to do so, we need the
Euler angles that specify the magnetic PAS with respect to the electric PAS:
(−γ, −β, −α). The transformed components are:〈

V 2
q

〉
M

= D
(2)
0q (−γ, −β, −α)

〈
V 2

0

〉
E

(103)

= d2
0q(−β) eiqα

〈
V 2

0

〉
E

(104)

=
(−1)q

2

√
4π

5
eiqα Y 2

q (−β, 0)Vzz (105)

(the subscripts M and E indicate components in the magnetic and electric PAS,
respectively). The γ-dependence has already disappeared. Now, fill this out in

24Note that α and γ are not the same angles as in section 6.2.1: α is now a rotation about
the magnetic hyperfine field.
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equation 85 in order to find the quadrupole hamiltonian in the magnetic PAS
as a function of Vzz, α, and β:

Hnuc
qq =

eQVzz

4I(2I − 1)h̄2

3 cos2 β − 1

2

(
3Î2
z − Î2

)
︸ ︷︷ ︸

â ′

+

√
3

2
sinβ cosβ

(
Îz Î±1 + Î±1Îz

)
︸ ︷︷ ︸

b̂±

e±i α +

√
3

8
sin2 β Î2

±︸ ︷︷ ︸
ĉ±

e±2i α

(106)

The matrix elements of the total hamiltonian Hnuc
jj + Hnuc

qq in the | I, mI >-
basis, now depend on β and α (to simplify notation, assume we are dealing with
I = 2):

H(α, β) =
eQVzz

4I(2I − 1)h̄2


a b+ e

iα c+ e
2iα 0 0

b− e
−iα a b+ e

iα c+ e
2iα 0

c− e
−2iα b− e

−iα a b+ e
iα c+ e

2iα

0 c− e
−2iα b− e

−iα a b+ e
iα

0 0 c− e
−2iα b− e

−iα a


(107)

with a the appropriate matrix element of â, etc. The symbol a is chosen such
that the magnetic interaction is correctly incorporated:

â = â ′ − gI µN B 4I(2I − 1) h̄

eQVzz
Îz (108)

This matrix contains both the magnetic and electric interaction in the diagonal,
only the electric interaction in the two side diagonals, and zeros elsewhere. Fur-
thermore, the symbols a, b± and c± depend on β, but not on α. Diagonalization
yields the eigenvalues and eigenvectors. This diagonalization can be achieved
by a suitable unitary transformation25:

Hd(β, α) = U(β, α)H(β, α)U−1(β, α) (110)

where Hd is diagonal in the new basis, and U is a unitary matrix. Next we prove
that U(β, α) can be factorized into a β- and a α-dependent matrix: U(β, α) =
U ′(β)A(α). Indeed, one can apply the following unitary transformation which
leaves a matrix H ′(β) depending not on α any more:

H ′(β) = A(α)H(β, α)A−1(α) (111)

25A unitary transformation of the square matrix B is defined as the operation needed to
obtain another square matrix A by

A = U B U−1 (109)

with U being a unitary matrix, i.e. U† = U−1. (U† is the conjugate transpose of U).
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
a b+ c+ 0 0
b− a b+ c+ 0
c− b− a b+ c+
0 c− b− a b+
0 0 c− b− a

 = A(α)


a b+ e

iα c+ e
2iα 0 0

b− e
−iα a b+ e

iα c+ e
2iα 0

c− e
−2iα b− e

−iα a b+ e
iα c+ e

2iα

0 c− e
−2iα b− e

−iα a b+ e
iα

0 0 c− e
−2iα b− e

−iα a

 A−1(α)

A(α) =


e2iα 0 0 0 0

0 eiα 0 0 0
0 0 1 0 0
0 0 0 e−iα 0
0 0 0 0 e−2iα

 (112)

In general, A(α) is constructed such that its diagonal runs from eIiα till e−Iiα.
As H ′(β) does not depend on α, the unitary matrix U ′(β) needed to transform
it into Hd will also be β-dependent only. And as an immediate consequence,
Hd(β) and its eigenvalues will not depend on α too. The complete unitary
transformation looks like:

Hd(β) = U ′(β)A(α)︸ ︷︷ ︸
U(β, α)

H(β, α) A−1(α)U ′−1(β)︸ ︷︷ ︸
U−1(β, α)

(113)

In this way we formally proved that for an axially symmetric electric-field gradi-
ent, the eigenvalues of the combined interaction do not depend on α, a property
which we said in the beginning was intuitively obvious.

Up to now, we did not require the electric interaction to be small. If we do so, we
can use first order perturbation theory, and examine how the magnetic energy
levels will change under the influence of the electric interaction. The eigenstates
of the unperturbed (=magnetic) hamiltonian are the | I, mI>-states, the energy
corrections Ec are:

Ec = < I, mI |HQ| I, mI> (114)

= h̄ωQ
3 cos2 β − 1

2

(
3m2

I − I(I + 1)
)

(115)

If β = 0◦, we retrieve the exact expression for the collinear case we found previ-
ously. The distance between ±mI -levels remains always constant, unregardless
the perturbation. There is also a so-called ‘magic angle’ βm ≈ 54.74◦ for which
3 cos2 βm − 1 = 0: for this angle, the original magnetic levels are not changed
in first order.

7.2.2 No axial symmetry

And this one we skip again.
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8 None of both interactions dominant

Let us finally sketch how to treat the most general case, where none of both
interactions is dominant, where the orientation of the Z-axes of both principle
axis systems is arbitrary and where the electric-field gradient may have no axial
symmetry. Most of the procedure we can copy from previous reasoning.

It does not matter which of both axis systems we take, assume we work in
the PAS of the magnetic interaction and specify the electric PAS with respect
to this magnetic PAS by Euler angles (α, β, γ). We can transform the electric-
field gradient from its PAS to the magnetic PAS (for which you have to use
the Euler angles (−γ, −β, −α)). Contrary to equation 103, the electric-field
gradient has V 2

0 and V 2
±2 as non-zero components in its PAS (below indexed

by P). The 5 components in the general axis system (below indexed by G) will
therefore all depend on both Vzz and η:

<V 2
q >G = D2

0q <V
2
0 >P +D2

2q <V
2
2 >P +D2

−2q <V
2
−2>P (116)

= d2
0q(−β)eiqα <V 2

0 >P + ei2γd2
2q(−β)eiqα <V 2

2 >P + e−i2γd2
−2q(−β)eiqα <V 2

−2>P

(117)

Note that the angle γ (rotation about the electric-field gradient principal axis)
does not disappear now. The 5 explicit expressions are (Vzz and η are with
respect to the PAS of the electric-field gradient):

<V 2
0 >G =

1

4

√
5

π
Vzz

(
3 cos2 β − 1

2
+
η

2
cos 2γ sin2 β

)
(118)

<V 2
±1>G =

1

8

√
5

3π
Vzz sinβ e±iα

(
±3 cosβ +

√
1

2
η
[
e−i2γ(1∓ cosβ)

−e+i2γ(1± cosβ)
])

(119)

<V 2
±2>G =

1

16
Vzz

√
30

π
e±i2α

(
sin2 β +

η

6

[
ei2γ(1± cosβ)2

+e−i2γ(1∓ cosβ)2
])

(120)

The matrix formed by the matrix elements will have the same structure as we en-
countered in the case with dominant magnetic interaction and axial symmetry,
and in exactly the same way the α-dependence can be removed. The eigenvalues
will hence depend on γ and β, contrary to the case with axial symmetry. No
perturbation theory can be applied now, and therefore the full diagonalization
by searching the suitable unitary transformation has to be performed. With
some writing effort, you can write down explicitly the matrix elements for in-
stance for I = 3/2. You will see that they are complex if η 6= 0.

It can be proven also that some mutual orientations of magnetic and electric
interactions yield the same eigenvalues.
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9 Examples

9.1 Fe4N

The ferromagnetic compound Fe4N was discussed already in sections hyper-
finecourse A: magnetic hyperfine interaction 5.1 and 3.7.2, where we have seen
that at the Fe-I sites both a hyperfine field and an electric-field gradient are
present. Experimental values are about 25 T for the hyperfine field, and 2.9·1021 V/m2

for Vzz. If we would measure26 this interaction with the first excited nuclear
level of the 57Fe isotope (I=3/2, gI=-0.1553 µN , Q=0.16 b), then the ratio
ω0/ωL = 0.09: we are in the situation with dominant magnetic interaction. If
the magnetic moments are along the (001) direction, then the angle between
the Z-axes of the magnetic and electric PAS is 0◦ for 2 out of 6 Fe-I atoms
(Fe-Ia), while it is 90◦ for the other 4 (Fe-Ib). Fe-Ia can be treated with the
exact equations from section 7.1, while for Fe-Ib the perturbation approach from
section 7.2 can be used (it would be a good illustration to compare the energies
of the 4 m-levels in both cases).

With the moments along the (111) direction, the angle between both Z-axes
is the magic angle of 54.74◦ for all 6 Fe-I atoms, and we should use the formulae
from section 7.2. Verify that the levels are identical to the Zeeman splitting
from a pure magnetic interaction.

10 Epilogue

Congratulations, you have reached the end of part A. I hope you had as much
fun as I did making these documents. I would like to thank S. Cottenier and
M. Rots for the initial syllabus on which these documents are based. S. Cot-
tenier deserves extra thanks for correcting and steering these documents where
needed. N. Steyaert gets my appreciations for his emotional support.

That will be all. Have fun in the next section where we learn the practical appli-
cations of these tiny energy differences. And good luck in your physics/engineering/...
futures.

PS I didn’t make the same kind of documents for part B as I am more in-
terested in the theory (part A) than the applications. This does not mean that
they aren’t as important, certainly in our daily lives. I hope these documents
inspire and give some other students the courage to do the same for part B.

26This is almost what happens in a Mössbauer experiment, although there also the ground
state I=1/2 level plays a role.
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