Life insurance mathematics

01/02/2024

1 Question 1

You are given the select-and-ultimate mortality table, with 2 year select period.

K	9Ex3	9Cx3+1	9x+2	R+2_
60	0,09	0,11	0,13	62
61 62 63	0,1	0,11 0,12 0,13 0,14	0,13 0,14 0,15 0,16	63
63	0,11	0,13	0,15	64 65
	,	0,14	0,16	0.5

- 1. Calculate $_{0,2}q_{[60]+0,7}$ under the assumption of UDD.
- 2. Calculate $_{0,7}q_{\rm [61]+0,7}$ under the assumption of constant force of mortality.
- 3. Proof $e_x = p_x(1 + e_{x+1})$

2 Question 2

You are given an extract of select life table, with 2 year select period. Assume an interest rate of 6%. Deaths are uniform distributed over each year of age.

x	$l_{[x]}$	$l_{[x]+1}$	l_{x+2}	<i>x</i> + 2	x	$l_{[x]}$	<i>l</i> [<i>x</i>]+1	l_{x+2}	<i>x</i> + 2
40	99 327.82	99 283.06	99 229.76	42	72	88 846.72	87 852.03	86 627.64	74
41	99 274.69	99 226.72	99 169.41	43	73	87 656.25	86 555.99	85 203.46	75
42	99 217.72	99 166.14	99 104.33	44	74	86 339.55	85 124.37	83 632.89	76
43	99156.42	99 100.80	99 033.94	45	75	84 885.49	83 545.75	81904.34	77
44	99 090.27	99 030.10	98 957.57	46	76	83 282.61	81 808.54	80 006.23	78
45	99018.67	98 953.40	98 874.50	47	77	81 519.30	79 901.17	77 927.35	79
46	98 940.96	98 869.96	98 783.91	48	78	79 584.04	77 812.44	75 657.16	80
47	98 856.38	98778.94	98 684.88	49	79	77 465.70	75 531.88	73 186.31	81
48	98 764.09	98 679.44	98 576.37	50	80	75 153.97	73 050.22	70 507.19	82

1. Describe the present value of the following insurance benefits in words.

$$Z = \begin{cases} 0 & \text{if } T_x \leqslant 5\\ 100000v^{T_x} & \text{if } 5 < T_x \leqslant 35\\ 50000v^{35} & \text{if } T_x > 35 \end{cases}$$

- 2. Give the expected present value in actuarial notation.
- 3. Suppose one single premium of 15 000. Show that this premium exceeds the present value of the insurance benefits, provided that

$$T_x \leqslant 5$$
 $T_x \geqslant 32, 56.$

4. Use the life table and the UDD assumption. Calculate the probability that where this one premium is sufficient to cover the present value of the benefits for a select life of 45.

3 Question 3

Consider a 20-year term insurance issued to a select life aged 40, with sum insured 50 000 payable at the end of the year of death. If the policyholder is still alive at age of 60, a sum of 25 000 is insured. Premiums are payable annually in advance. In the first 10 years level premiums equal to P are payable. After 10 years this premium is reduced to 0.5P payable for the rest of the term.

We use the following premium basis:

- interest: 4% per year effective
- initial expenses: 20 % of the gross premium plus an extra 100
- \bullet renewal expenses: 5% of the gross premiums, the first excluded, plus 25, annually from the second onward
- expenses at benefit payment: 100

You are given the following values, calculated at an interest rate of 4%:

	i = 4 % A = 4 % C = 402. 201 D, 0.1 6 43	A E403 201 0,4439	A [40] 15] 0,01045	A [40] 151 0,5469	A E402 101 0, 6703
	7 45:157 2,01674	A 45:151 0,5418	A45 57 0,8181		
the second s	L Euo]: 201 14,03	à Euo]: 101 8,413	.0. 45 151 11,48	a 45.107 8,401	a _{45 57} 4,623
Carl Carl State	a 50:17 1,381	Q 50:57 4,619	а _{ээхэл} 4,6лл		

- 1. Calculate the net premium.
- 2. Show that the gross premium is equal to 1179.
- 3. Calculate the gross premium policy value at time t = 5, using the premium basis.
- 4. Explain why the policy value at time t = 5 increases/decreases if we change the interest rate to 6%.
- 5. Calculate the asset share at time t = 1, using the premium basis. Given is a mortality rate equal to $q_{[40]} = 0,00053605$. What is the policy value at time t = 1?