Linear Optimisation

More modeling exercises

A company operates two factories, A and B.

- Each factory
 - makes two products: standard and deluxe.
 - uses two processes: grinding and polishing

The grinding and polishing times in hours for a unit of each type of product in each factory are as follows:

		Factory A			Factory B		
		Standard	Standard Deluxe Standard		Deluxe		
Grin	ding	4	2		5	3	
Polis	hing	2	5		5	6	

- Factory A has a grinding capacity of 80 hours and polishing capacity of 60 hours per week.
- Factory B has a grinding capacity of 60 hours and polishing capacity of 75 hours per week.

- A unit of *standard* gives a profit contribution of \$10, while a unit of *deluxe* gives a profit contribution of \$15.
- Each unit of each product uses 4 kilograms of raw material.
- The company has 120 kilograms of raw material available per week. Assume that
 - Factory A is allocated 75 kilograms of raw material per week
 - Factory B is allocated 45 kilograms of raw material per week
- For each factory, formulate an LP whose solution maximizes its profit.

- Now suppose that a company model is built in order to maximize total profit.
- There will be a single raw material constraint limiting the company to 120 kilograms per week. No longer allocate 75 kilograms of raw material to A and 45 kilograms to B.
- What would be the new model?
- Can you compare the optimal value of the company model with those of the factory models?

- An agricultural mill manufactures feed for cattle, sheep and chickens by mixing corn, limestone, soybeans, and fish meal.
- These ingredients contain vitamins, protein, calcium and crude fat. The content of the nutrients in each kilogram of the ingredients are as follows:

	Nutrient						
Ingredient	Vitamins	Protein	Calcium	Crude Fat			
Corn	8	10	6	8			
Limestone	6	5	10	6			
Soybeans	10	12	6	6			
Fish meal	4	8	6	9			

- The mill is contracted to produce 10, 6 and 8 tons of cattle feed, sheep feed and chicken feed, respectively.
- A limited amount of the ingredients is available:
 - 6 tons of corn whose price per kilogram is \$0.20
 - 10 tons of limestone whose price per kilogram is \$0.12
 - 4 tons of soybeans whose price per kilogram is \$0.24
 - 5 tons of fish meal whose price per kilogram is \$0.12
- The minimal and maximal units of the nutrients that are permitted for a kilogram are as follows:

	Nutrient							
	Vitamins		Protein		Calcium		Crude Fat	
Product	min	max	min	max	min	max	min	max
Cattle feed	6	∞	6	∞	7	∞	4	8
Sheep feed	6	∞	6	∞	6	∞	4	6
Chicken feed	4	6	6	∞	6	∞	4	6

• Formulate this problem so that the total cost is minimized.

- The quality of air in an industrial region largely depends on the emission from *n* plants.
- Each plant *j* can use *m* different types of fuel.
- Plant *j* needs d_j thermal units of total energy per day.
- Each fuel type *i* costs *c_i* dollars per ton and generates *a_{ij}* thermal units of energy at plant *j*.
- e_{ij} is the emission per ton of fuel type *i* at plant *j*.
- The level of air pollution in the region is not to exceed *b* micrograms per cubic meter.
- *γ_j* is the meteorological parameter relating emissions at plant *j* to micrograms per cubic meter.
- a) Formulate the problem of determining the mix of fuels to be used at each plant.
- b) How could you ensure equity among the plants?

The network in the figure represents a project of building a house. Each arc represents some activity forming part of the project. Durations of the activities are attached to corresponding arcs. Before an activity on arc i - j can start, all activities on arcs coming into node imust be finished. The arc 4-2 marked with a dashed line is a dummy activity having no duration. Its only purpose is to prevent activity 2-5 starting before activity 3-4 has finished.

What is the earliest time the project can be finished?