Examen
Statistical Mechanics
21 November 2016, 2-4pm

3 points

Diffusion

Consider N diffusing particles in one dimension and let D be the diffusion coefficient. Let
us suppose that at time ¢ = 0 the concentration is
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where a is given. Calculate c(x,t) the concentration at later times.
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Ideal Gas in grand canonical ensemble

Calculate the average number of particles (N) of an ideal gas as a function of the temperature
T, volume V and chemical potential p.

3 points

Second virial coefficient

We consider a real gas of particles interacting through a purely repulsive long range potential
given by
€
¢l ==
where ¢ > 0, n > 0. Is the second virial coefficient by(7T") positive or negative? Give some
intuitive physical arguments to explain this result. How does b3(T") depend on temperature

(eg. power-law, exponential. ..)?
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Diatomic molecule

Consider a classical system of N noninteracting diatomic molecules enclosed in a box of
volume V' at temperature 7. The molecule is considered as composed by two atoms of mass
m and charges +¢q and —¢, as shown in the Fig. 1. We assume that the two masses are
bound by dan harmonic spring with spring constant K. In the system there is a constant
electric field E = €2 pointing along the z-direction. The Hamiltonian for a single molecule
is then given by
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Figure 1: Molecule coomposed by two charged atoms, subject to an electric field E.

where p1, Pa, 71, T2 are the momenta and positions of the two atoms in a molecule. z; is the
z-component of the vector 7.

a) Compute the canonical partition function for a single molecule and deduce from that
the partition-function for N molecules. Hint: whenever necessary use a change of
variables to transform the integrals into gaussian ones.

b) Compute the average internal energy per molecule (#;) and the pressure of a gas of
N molecules.

¢) Compute the mean extension of a molecule in the z, y and z directions, i.e. (z1 — z2),
(y1 —yo) and (z; — 25) and the mean quadratic extensions, i.e. ((z1 —z2)?), {(y1 —v2)?)
and ((21 — 22)?).

6 points

Chain of oscillators

Consider a one dimensional chain of N — 1 identical coupled oscillators shown in the Fig. 2.
The total Hamiltonian of the system is

2m
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MIN

a) Calculate the average of the total energy (F) and the variance (E?) — (E)* and show
that the relative fluctuations of F are small in the thermodynamic limit.

b) Repeat the calculations of a) for anharmonic oscillators described by the following

Hamiltonian
2 N-lg
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Figure 2: Linear chain of oscillators
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