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6.2 The Rössler system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.3 The logistic map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.4 The sine and tent map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

i



7 Synchronization 23
7.1 The period of a nonuniform oscillator . . . . . . . . . . . . . . . . . . . . . . 23
7.2 Triangle wave in firefly model . . . . . . . . . . . . . . . . . . . . . . . . . . 23

8 Traveling wave solutions of reaction diffusion model 24
8.1 Fisher-Kolmogorov equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.2 Traveling waves in bistable systems . . . . . . . . . . . . . . . . . . . . . . . 25
8.3 Special solution of the Fisher-Kolmogorov equation . . . . . . . . . . . . . . 25

9 Additional problems 26
9.1 Hopf bifurcation and polar coordinates . . . . . . . . . . . . . . . . . . . . . 26
9.2 Epidemic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9.3 Beyond QSSA: matched asymptotic expansions . . . . . . . . . . . . . . . . 27

ii



1 Population Dynamics

1.1 Logistic growth

a) Solve exactly the logistic equation1

Ṅ = αN

(
1− N

K

)
(1)

starting from an initial population N = N0.

b) With the help of a Matlab (or Mathematica, or whatever you like) code solve the same
equation numerically by discretizing the differential equation to first order2 in a small
time step ∆t using α = 3 and K = 103. Consider N0 = 10 and N0 = 105. Plot the
numerical and analytical solution as functions of time and verify that they overlap.

c) Perform a linear stability analysis by expanding Eq. (1) around the stable fixed point
N = K and deduce the long time behavior. What is the characteristic relaxation time
to the stationary point? Plot log |N(t)−K| as a function of time and check that both
the exact solution and that computed from discretization agree with the expected long
time behavior.

1.2 Sustained Harvesting

Consider a population evolving following a logistic growth. The population is subject to
harvesting (for instance fishing in a fish population). We consider two different models of
harvesting:

Ṅ = αN

(
1− N

K

)
− EN (2)

Ṅ = αN

(
1− N

K

)
− Y0 (3)

where the parameters α and K are fixed, while E and Y0 can vary. We refer to Eq. (2) as
constant effort harvesting, while to Eq. (3) as constant yield harvesting. We say that there
is a sustained harvesting if a stable fixed point with N∗ > 0 exists. The yield is the fraction
of harvested population per unit of time, which is Y = EN and Y = Y0 in the cases (2) and
(3) respectively.

a) Show3 that for E and Y0 sufficiently large the Eqs. (2) and (3) have no stable fixed
points with N∗ > 0. For lower E and Y0 other fixed points appear. Discuss their
nature (stable, unstable, half-stable?).

b) Consider the range of parameters in which a stable fixed point N∗ > 0 is present in
the two cases. Keeping α and K fixed what is the maximal yield possible?

c) Harvesting at a constant yield (Eq. (3)) is not a general good strategy. Can you explain
why?

1Hint: use the transformation y = 1/N which maps Eq. (1) into a linear differential equation. This
differential equation is known in mathematics as a Bernoulli equation.

2Although more sofisticated numerical techniques exist, for the purposes of this course it is sufficient to
discretize the differential equation Ṅ = f(N) as N(t+ ∆t) ≈ N(t) + f(N(t))∆t.

3This problem can be solved quite easily graphically. Plot on a graph the logistic term y = αN(1−N/K)
and find N∗ from the intersection with the line y = EN or y = Y0.
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1.3 Gompertz law

Another type of population growth model was developed by Gompertz. According to this
model the number of individuals in the population follows the differential equation

Ṅ = αN log

(
K

N

)
(4)

a) Find an appropriate variable transformation and solve this differential equation exactly.

b) Plot the exact solution of Eq. (4) and compare it with that of Eq. (1) for the same initial
condition and parameters α and K. Can you understand qualitatively the differences
between the two models4?

1.4 Delays

In general it is easy to show that a first order non-linear differential equation Ṅ = f(N)
cannot have oscillating solutions. However, oscillating solutions are possible if the equation
contains some delay. Consider for instance a delay in the logistic growth:

Ṅ(t) = αN(t)

(
1− N(t− T )

K

)
(5)

where we fix the parameters to T = 3, α = 1 and K = 103.

a) Solve the differential equation (5) numerically, using as initial condition N(t) = 10 for
t ≤ 0. Show that after an initial transient the solution follows an oscillating behavior
at long times.

b) Repeat the numerical calculation for an initial condition N(t) = 105 for t ≤ 0. Show
that at long times the solution is the same as in (a), except for possibly a phase shift5.

1.5 Rabbits versus Sheep

We consider the following model of two competing populations, which belongs to the class
of Lotka-Volterra models6:

Ṅ = N(3−N − 2M) (6)

Ṁ = M(2−N −M) (7)

The two populations follow a logistic growth7, but compete for common resources. This
interactions is described by the negative non-linear cross-terms.

a) Show that the system has three fixed points and determine their nature.

b) Determine the full phase portrait, eventually with help of numerical calculation. Con-
clude that in this model the two populations cannot coexist.

4Hint: Compared the two left hand sides of Eqs. (4) and (1), to predict the rate of growth of the
populations for small and large N ’s.

5This type of solution is known as limit cycle (more on this will follow)
6This example is taken from ithe book S. Strogatz, ”Nonlinear dynamics and chaos” (Perseus, 1994)
7This is different from the basic LV model in which, in absence of competitors, one species grows ex-

ponentially and the other shrinks exponentially. Here in absence of competitors the two species has stable
fixed points N = 3 and M = 2
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1.6 Population model with delay: analytics

We consider the equation

Ṅ = rN

(
1− N(t− T )

K

)
(8)

The population N follows logistic growth, but there is a time delay in the competition
term, which can account for, for example, a maturation time, or a delayed effect of the
species on its environment.

In problem 1.4 you are asked to solve this equation numerically. Here we will investigate
the stability of the steady state analytically.

a) By suitable rescaling of N and t, show that the equation can be rewritten as

du

ds
= u(1− u(t− τ)) (9)

Naturally, the scaled delay time τ depends on r and T . From now on we will use u′ to
denote du

ds
and use t instead of s again.

b) For a delay equation, steady states are constant solutions where u′ = 0. Since they are
constant, u(t) = u(t− τ) = u∗. Find the steady states.

c) As for ODEs, the stability of the steady states can be determined by considering the
evolution of a small perturbation. This is done by setting u = u∗ + U , where u∗ is
the steady state and U(t) is the small perturbation, which is time dependent. By
substituting into the equation and only keeping linear terms in U , show that, for the
non-zero steady state, you find the following equation for U :

U ′ = −U(t− τ) (10)

d) The steady state is stable, if for any solution of the form U = eλt, the real part of λ is
smaller than zero. Show that, by substituting this form into the linear equation above,
we obtain the following condition on λ:

λ = −e−λτ (11)

e) Show graphically (by plotting both sides of the equation as function of λ) that any real
solution of this equation has negative real part, for any value of τ .

f) To find complex solutions, take λ = µ + iω. Substitute this into 11 and separate real
and imaginary parts. One can show (you needn’t) that for small τ , there are only
solutions with µ < 0, such that the steady state is stable. As τ increases beyond
a threshold, values of λ with µ > 0 appear in a so-called Hopf (or Andronov-Hopf )
bifurcation. Find the threshold value for τ above which µ > 0 by putting µ = 0 and
solving for ω and τ .

g) Finally go back to unscaled variables. By using your result for the instability threshold
τ , show in the (r, T ) plane for which values of r and T the solution is stable, and where
it is oscillatory (unstable).

This type of equation has been used to explain periodic behavior in isolated populations,
eg. without predator or competition.
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1.7 Spruce budworm dynamics

We consider the equation

Ṅ = rN

(
1− N

K

)
− BN2

A2 +N2
. (12)

This equation describes the dynamics of the spruce budworm population. The first
term describes logistic growth, the second term describes predation by birds. Predation is
nonlinear.

a) Plot the curve which shows predation as function of the number of worms. Start with
B = 1 and A = 2:

f(N) =
N2

4 +N2

Interpret the shape of this curve. How can you explain ecologically that the amount
of predation levels off? Next, investigate the effect of the parameters A and B and
describe.

b) Show that by rescaling the variables as

u = N/A q = K/A ρ = rA/B s = Bt/A,

we can reduce the equation to

du

ds
= ρ

(
1− u

q

)
− u2

1 + u2
(13)

c) Analytically determine the stability of the zero steady state.

d) Graphically determine the steady states of this system, for example by looking at
intersections of the curves

f(u) = ρ(1− u/q) and f(u) =
u

1 + u2

Try different values of ρ and q. How many solutions are there in addition to the zero
solution? How does this depend on ρ and q?

e) In reality, the worms grow faster when it is warmer. The value of r, and therefore of
ρ, is temperature-dependent. Fix a number for q (for example q = 10), and vary ρ
from low to high values. By determining (graphically) the steady states for increasing
values of ρ, show that the population of budworms can suddenly jump to a large
population when the temperature rises, for example in summer. What happens when
after summer the temperature and therefore ρ slowly decrease? The phenomenon you
observe is called a hysteresis phenomenon, and can have a huge impact on ecosystems.

f) Verify numerically your solution: solve the system starting with a low value of ρ and
let it evolve to the non-zero steady state. Increase ρ a bit and solve again, using your
previous steady state as initial condition. Continue doing this and plot the steady
states as function of ρ.
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g) (Difficult!) Determine the region in (ρ, q) space where three (non-zero) steady states
exist. Hint: start from the graphical determination of the steady state as intersection of
the two curves, and determine conditions for two of the intersection points to coalesce
(in this case both the functions and their tangents are equal at the intersection point).
Note: you will not find explicit expressions for ρ as function of q, but you can describe
ρ(φ) and q(φ) as parameteric curves with φ as a parameter. Plot the region. What
shape does it have?

1.8 Lotka-Volterra: predator-prey model and a more realistic ex-
tension

The classic predator-prey models is given by

Ṅ = aN − bNP
Ṗ = cNP − dP

(14)

The solutions of this system are closed trajectories in the (N,P ) plane, thus oscillations
in time for both variables.

a) Show that the system, by adequately rescaling the variables and redefining parameters,
can be rewritten as

u′ = u(1− v)

v′ = γv(u− 1)
(15)

where γ = d/a.

b) This system is conservative. This means there is a conserved quantity (similar to
the sum of kinetic and potential energy for a mechanical system). kind of energy
conservation. Show that the function

H = γu+ v − ln(uγv)

remains constant over time. This implies that many cyclic solutions exist together, and
which one the system follows depends on the initial conditions. You can compare this
to a pendulum, where the intial condition determines the amplitude of the periodic
motion.

c) The Lotka-Volterra model is not realistic and has some undesireable features. For
example, in the absence of predators, the prey population would grow unboundedly.
Numerous extensions of the model have been proposed. One of them reads after
suitable scaling:

u′ = u

(
1− u

q

)
− uv

1 + u

v′ = cv
u

1 + u
− dv

(16)

This model is also called the Rosenzweig-MacArthur model. Explain how these equa-
tions differ from the basic Lotka-Volterra model. Hint: in the Lotka-Volterra model,
predation depends on u and v as uv. Here, the prey dependence is given by u/(1 + u).
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What does this function look like, and what does it tell us about the capacity of
predators to eat prey?

d) For this model, determine the steady states and their stability. First, take fixed pa-
rameters c = 1 and d = 1/2, but leave q > 1 undetermined and determine fixed points
and their stability as function of q. You may find that there is a threshold value of q,
above which the system’s behavior changes markedly.

e) Run numerical simulations to check your stability results. You should find oscillatory
behavior for large enough q. Does the amplitude of the oscillation depend on the initial
condition? Contrast with the original Lotka-Volterra equations.

f) (Optional) take c and d as undetermined parameters and see how they influence the
fixed points and their stability.

You will notice that increasing the carrying capacity of the prey, q, leads to bigger
oscillations of the system. In real ecosystems, this actually increases the risk of extinction:
large amplitude oscillations pass close to the u = 0 line, and when a little noise is added,
the prey may go extinct. The phenomenon that increasing prey capacity may destabilize the
ecosystem is sometimes called the paradox of enrichment.

6



2 Recap of concepts of non-linear dynamics

2.1 Classification of Linear Systems

Discuss the nature of the fixed point x = y = 0 of the following linear differential equations.
Plot the trajectories in the vicinity of this fixed point. Indicate real eigenvectors in your
sketch.

a) {
ẋ = y
ẏ = −2x− 3y

b) {
ẋ = −3x+ 4y
ẏ = −x+ y

c) {
ẋ = −3x+ 4y
ẏ = −2x+ 3y

2.2 Damped Harmonic Oscillator

The motion of a damped harmonic oscillator is described by mẍ+ bẋ+ kx = 0, where b > 0
is the damping constant.

a) Rewrite the equation as a two-dimensional linear system.

b) Classify the fixed point at the origin and sketch the phase portrait. Be sure to show all
the different cases that can occur, depending on the relative sizes of the parameters.

c) How do the results relate to the standard notions of overdamped, critically damped,
and underdamped vibrations?

2.3 Phase portrait in two dimensions

We consider a system of two coupled non-linear differential equations{
ẋ = f(x, y)
ẏ = g(x, y)

(17)

Each solution of this system forms a continuous curve in the xy plane. Given an initial
value (x0, y0) the curve is such that at any given points of coordinates (x, y), the vector with
coordinates (f(x, y), g(x, y)) is tangent to it. The phase portrait is a geometric representation
of the solutions of the system in the xy plane. An example of phase portrait is shown in
Fig. 1. Note that two different solutions never cross! This is because we assume that the
function f(x, y) and g(x, y) are sufficiently regular (it is sufficient that the functions are
continuous with a continuous first derivative) so that given an initial value the solution of
(17) is unique.

In order to sketch the phase portrait one can start from the analysis of the nullclines,
which are the curves in the (x, y) plane for which ẋ = 0 or ẏ = 0. The intersection of the
nullclines are the fixed points of the problem. In addition the nullclines divide the plane in
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regions with different signs of ẋ and ẏ and a solution cross the nullclines parallel to the x or
y axes.

As an example we consider the following system As an example we consider the following
system {

ẋ = x− y
ẏ = 1− ex (18)

a) Draw the two nullclines and identify the fixed points.

b) Find the signs of ẋ and ẏ in the four regions of the xy-plane partitioned by the nullclines.

c) On the basis of the results stketch a plausible form of a phase portrait. Include the
nullclines in your graph.

d) Confirm these findings by plotting the numerical solutions, obtained by Matlab or
other tools, from the discretization of the (18) using in particular as initial conditions
(x, y) =(1, 2), (1, 1.5), (−1,−2) and (−1,−1.2).

2.4 Poincaré-Bendixson Theorem

(This is problem 7.3.1 from the book of Strogatz)

The Poincaré-Bendixon theorem states that if a closed set R of the plane without a fixed
point there is a trajectory ~x(t) which remains confined in R, then R contains a periodic
orbit. To apply this theorem one should constract a trapping region, i.e. to find R such that
all trajectories at the boundary flow inside it.

Consider the system {
ẋ = x− y − x (x2 + 5y2)

ẏ = x+ y − y (x2 + y2)
(19)

we construct a trapping region for this system, which is an annulus R = {(x, y) with r1 ≤√
x2 + y2 ≤ r2}

a) Using the linear stability analysis classify the fixed point in (0, 0).

Figure 1: Example of a phase portrait of a two dimensional system. In this case the fixed
point is a saddle node.

8



b) Rewrite the system in polar coordinates, using rṙ = xẋ+ yẏ and θ̇ = (xẏ − yẋ)/r.

c) Using the Equation for ṙ determine the circle of maximal radius, r1, centered on the
origin such that all trajectories have a radially outward component on it (eg ṙ > 0).

d) Determine the circle of minimal radius, r2, centered on the origin such that all trajec-
tories have a radially inward component on it (eg ṙ < 0).

e) Having constructed the trapping region we can then apply the Poincaré-Bendixon
theorem. We know then that the system has a closed orbit. By solving the system
(19) numerically, show that the closed orbit is a limit cycle contained in the trapping
region r1 ≤ r ≤ r2. Show that the limit cycle is stable by plotting the numerical
solutions of Eq. (19) using as initial values r < r1, θ = 0 and r > r2, θ = 0.

9



3 Quasi steady state approximation

3.1 Quasi steady-state approximation: a linear example

When dealing with N coupled first order differential equations, one can use of the so-called
quasi-steady-state approximation. This approximation can be applied if one variable evolves
much faster than the others. Let us suppose that x1(t) is the “fast” variable. We take then
ẋ1 = 0, from which one obtains x1(t) as a function of all other N − 1 variables. In this
way we reduce the problem to a system of N − 1 equations. The procedure is known in
mathematics as singular perturbation theory.

As an example of this method, consider the following system of linear differential equa-
tions {

ẋ = −3x+ y
ẏ = 100(2x− y)

with the given initial conditions x(0) = 1 and y(0) = 0.

a) Identify the “fast” and the “slow” variable.

We now rewrite this system of linear equations in matrix form as

Ω̇(t) = MΩ(t)

with Ω(t) =

(
x(t)
y(t)

)
. M is a 2× 2 matrix.

Note that this linear system of differential equations can be solved exactly. The solution
can be expressed in terms of eigenvectors and eigenvalues of M (facultative).

Eventually, the equations can be integrated numerically as follows

Ω(t+ ∆t) ≈ Ω(t) + ∆tMΩ(t) +O(∆t2) (20)

b) Use Eq. (20) to trace the trajectories of x(t) and y(t) (with a sufficiently small ∆t to
avoid numerical rounding errors, and using the initial conditions given above).

c) Apply the quasi-steady-state approximation to Eq. (20) now by setting dy
dt

= 0 and
expressing y(t) as a function of x(t).

b) Plot the solutions of the quasi-steady-state approximation from (c) and compare them
with the numerical exact solution of (b). Do the steady-state solution approximates
well the full solution at all times?

3.2 Enzymatic degradation

In many situations a chemical X is degradated, meaning that it breaks into fragments which
do not participate to the reactions anymore. Spontaneous degradation of X, i.e. a reaction
X → ∅ is described in the mass action kinetics by a term −αx, where x is the concentration
of X, and α the degradation rate. Synthesis and degradation of a chemical are described by
the equation

dx

dt
= β − αx (21)
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where β is the creation rate, which can eventually depend on other chemical concentrations.
For the time being we take β as a constant.

We consider here a different type of degradation due to the effect on an “enzyme” E on
X. The enzymatic degradation is described by the following reactions

E +X
k1−⇀↽−
k−1

EX
k′−→ E (22)

which describe binding of X to the enzyme E and the formation of a complex EX, through
a reversible reaction, followed by the irreversible degradation of X. Once degradation has
occurred the free enzyme is released.

Use the quasi steady state approximation, i.e. assume that the complex EX is rapidly
formed, to find a new form of degradation term replacing the αx in Eq. (21).

3.3 Two subunit enzyme

We consider an enzyme which is formed by two subunits and which we denote as EE. Each
subunit is capable of transforming a substrate S in a product P. The reactions are:

EE + S
k1−⇀↽−
k−1

EES (23)

EES
k3−→ EE + P (24)

EES + S
k2−⇀↽−
k−2

SEES (25)

SEES
k4−→ EES + P (26)

We consider the steady state approximation for the formation of the two complexes EES
and SEES.

a) Consider the following choice of rates: k1 = 2k2, k−2 = 2k−1, k4 = 2k3. Argue that this
choice corresponds to the case of two subunits acting independently from each other.
Show that the system follows the usual Michaelis-Menten kinetics:

dp

dt
=

vmaxs

Km + s
(27)

and determine the parameters vmax and Km as functions of k1, k−1 and k3.

b) Find the equation governing the product formation for arbitrary values of the pa-
rameters. Express this equation as a function of the Michaelis-Menten constants
Km1 = (k−1 + k3)/k1 and Km2 = (k−2 + k4)/k2 of the interaction of the enzyme
with the first and second substrate.

c) Show that in the limit Km1 →∞ and Km2 → 0 such that Km1Km2 → const. one finds
Hill kinetics with a Hill exponent equal to 2.

3.4 Messenger RNA dynamics

In the description of gene networks in the course we have neglected mRNA production. We
consider here a model in which both mRNA and protein productions are taken into account.
These are described by the following linear differential equations
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dy

dt
= fm − αmy (28)

dY

dt
= py − αY (29)

where y is the mRNA concentration and Y the protein concentration. fm is the mRNA pro-
duction rate while αm and α represent the degradation rates of mRNA, protein respectively.
Equation (28) assumes that the rate of protein production is proportional to the mRNA
concentration.

a) What is the general solution of Eqs. (28,29) given the initial conditions y(0) = Y (0) =
0?

b) Now consider the limit αm � α, i.e. the mRNA degrades much faster than the protein.
Take this limit in the general solution of Eqs. (28,29). What does this limit correspond
to?

12



4 Motifs

From Wikipedia: Network motifs are connectivity-patterns (sub-graphs) that occur much
more often than they do in random networks. Most networks studied in biology, ecology
and other fields have been found to show a small set of network motifs; surprisingly, in most
cases the networks seem to be largely composed of these network motifs, occurring again
and again.

4.1 Motifs in the E. Coli Gene Regulatory Network

The Regulatory Network of the bacteria E. Coli can be found in http://itf.fys.kuleuven.

be/~enrico/Teaching/coliInterFullVec.txt This list contains per row three numbers:
x, y and z, where x and y are numbers identifying two proteins. The z is instead 1, 2 or 3,
where 1 means protein X is an activator for protein Y, while 2 means protein X represses
protein Y and the 3 means that the type of interaction is unknown. As an example, the
first row of the file is 3 4 2 which means the protein 3 represses the protein 4. In the
file http://itf.fys.kuleuven.be/~enrico/Teaching/coliInterFullNames.txt you will
find a “dictionary” to assign to each number a protein name: for instance protein 3 is acrAB
and protein 4 is acrR.

a) By analyzing the above given files determine the number of nodes (N) and the number
of edges (E) of the network.

b) Determine the number of selfregulating8 proteins Nself and distinguish the number of
activators (Na

self) and repressors (N r
self).

c) Calculate analytically 〈Nself〉 the average number of selfregulating nodes in a random
network with the same number of nodes and edges as the above network. Conclude
that selfregulation is a network motif.

d) Another interesting regulation pattern is the Feed Forward Loop (FFL) shown in Fig. 2.
How many FFLs can you detect in the above file? Show that FFLs occurr more often
in the above file than in a random network9. Thus FFLs are network motifs as well.

Figure 2: The Feed Forward Loop.

8Those which interact with themselves; these are lines in the file with the same numbers in the first two
columns, as eg. the second line of the file 6 6 3.

9This number can be calculated analytically. But you can also generate your own random network with
the same number of nodes and edges as the above. You can then compute the average number of FFLs in
many randomly generated networks, to check if this number matches with your analytical result.
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4.2 Positively autoregulated protein

As shown in the previous problem autoregulation is a network motif. We consider the case of
a positively autoregulated protein whose production is governed by the following differential
equation

dX

dt
=

βXn

Xn +Kn
− αX (30)

Here the first term is a Hill function with Hill coefficient n. The n = 1 is the Michaelis-
Menten kinetics.

a) Non-dimensionalize Eq. (30) by rescaling appropriately X and the time. Show that
the dynamics is governed by a single parameter which is a combination of α, β and K.

b) Consider the case n = 1. For which values of α, β and K has Eq. (30) a fixed point
with X = X∗ > 0? Is this fixed point stable or unstable?

c) Solve numerically Eq. (30) using α = β = 1 and K = 1/4, taking as initial value
X(0) = 10−3. Plot on the same graph your numerical solution with the solution of the
non-regulated protein synthesis i.e.

dX

dt
= β − αX (31)

using the same parameters and initial condition. From the analysis of the graph of
the solution of Eq. (30) and from the analytical solution of Eq. (31) determine the
response time10 for the two cases and show that positive autoregulation leads to a
longer response time compared to the non-regulated case.

d) We consider now the case n = 2. For which values of α, β and K does Eq. (30) show
bistability?

4.3 Negatively autoregulated protein

We consider the case of a negatively autoregulated protein whose production is governed by
the following differential equation

dX

dt
=

βKn

Xn +Kn
− αX (32)

a) Numerical solution for n = 3 and n = 8

b) Compare with the boolean approximation

c) In the case of delay we expect

dX

dt
=

βKn

X(t− τ)n +Kn
− αX (33)

solve numerically again.

10We recall that the response time is the time for the system to reach half of the stationary value concen-
tration
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YX

Figure 3: Two mutually repressing Transcription Factors. This module is known as Genetic
Toggle Switch.

4.4 Genetic Toggle Switch

We consider two transcription factors mutually repressing each other as illustrated in Fig-
ure 3. This system can become bistable and thus can be considered as a genetic switch 11.
To understand qualitatively bistability consider the case in which the concentration of X is
high: the production of Y is then repressed, so Y has a low concentration. If this happens
Y cannot repress X, which then maintains its high concentration. The other possibility is a
symmetric situation in which the role of X and Y is interchanged. Bistability occurs only
for some specific choice of model and parameters.

We consider the following model

dX

dt
= f(Y )− αX (34)

dY

dt
= f(X)− αY (35)

where f() is a repressor Hill functions characterized by the three parameters β, K and n

f(X) =
βKn

Xn +Kn
(36)

a) Perform a non-dimensionalization of Eqs. (34, 35).

b) Show that if the Hill coefficient is n = 1 the Eqs. (34, 35) have a single fixed point
(X∗,Y ∗) with X∗ = Y ∗. There is thus no bistability.

c) Consider now the case n = 2. Show that if β > 2αK the Eqs. (34, 35) have three
fixed points: one symmetric (X∗ = Y ∗) and two asymmetric (X∗ > Y ∗ and Y ∗ > X∗).
Show also that there is a single symmetric fixed point (X∗ = Y ∗) if β < 2αK.

Hint: To get a qualitative picture use a graphical solution by plotting the two nullclines
on the XY plane. As function of the parameters one may have one or three intersections
between the nullclines. To find the bifurcation value show first that asymmetric fixed
points are characterized by the relation X∗Y ∗ = K2. Use this relation to prove that
asymmetric fixed points exist only for some choice of the parameters.

d) Compute the Jacobian matrix of the system. Show that the the symmetric fixed point
is stable if β < 2αK, while it becomes a saddle node if β > 2αK. Show that the
asymmetric fixed points are always stable.

e) Draw the phase portrait of the system.

11The properties of an artificially synthesized Genetic Toggle Switch was discussed by Gardner et al. in
Nature 403, 339 (2000), see http://www.nature.com/nature/journal/v403/n6767/pdf/403339a0.pdf
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4.5 Negatively autoregulated cascade

Study the dynamics of the negatively autoregulated cascade shown in Fig. 4. In this simple
motif the protein X represses the production of Y. Both X and Y negatively regulate their
own promoters. We assume logic input functions with threshold levels KX , KY and KXY for
the action of X on its own promoter, of Y on its own promoter and of X on Y , respectively.
For simplicity we take the production rates are all equal to β.

X Y

Figure 4: Negatively autoregulated cascade.

a) At time t = 0, X begins to be produced starting from X(0) = 0, while Y is at
its stationary level Y (0) = KY . What is the dynamics of X and Y? What are the
response times of X and Y?

b) At time t = 0, the production of X stops after a long period of production, the
concentration decays from its initial steady-state level. What are the dynamics of X
and Y? What are the response times of X and Y?
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5 Non-linear Oscillators and limit cycles

5.1 Brusselator

The Brusselator is a model described by the coupled differential equations

dx

dt
= a+ x2y − (b+ 1)x (37)

dy

dt
= bx− x2y (38)

where a and b are positive constants.

a) Trace the nullclines and show that the system has a unique fixed point.

b) In a two dimensional systems one distinguishes two types of oscillators depending
on the sign patterns of the Jacobian: the substrate-depletion and activator-inhibitor
oscillators. To which of these two does the Brusselator belong?

c) Consider a fixed value of b and a varying a. From the shape of the nullclines determine
in which parameter range the Jacobian has the correct sign pattern for limit cycles to
arise from a Hopf bifurcation. Determine analytically the values of a and b at the Hopf
bifurcation.

d) By solving numerically the differential equations show that inside the above region
there is a limit cycle solution.

5.2 The Goodwin model

The Goodwin model12 is one of the simplest models of biological oscillators. This model is
described by the following three differential equations:

dx

dt
=

1

1 + zp
− bx (39)

dy

dt
= b(x− y) (40)

dz

dt
= b(y − z) (41)

(in non-dimensionalized form). Note that there is only one non-linear term in the model
describing repression of the variable z on x.

a) Show that the equations have a unique fixed point.

b) Show that the model fixed point undergoes a Hopf bifurcation for p > 8 (this is an
unrealistically high value for the cooperativity parameter p), while there is no Hopf
bifurcation for p < 8.

c) Show by numerical integration of the equations (39, 40,41) that in the region of pa-
rameters in which the fixed point is unstable there is a limit cycle. For this purpose
plot the trajectories of the solutions of the differential equations in the xy, yz and xz
planes using different initial conditions.

12See: B. Goodwin, Nature 209, 479 (1966)
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We consider now a generalized Goodwin model with N components

dx1
dt

=
1

1 + xpN
− bx1 (42)

dx2
dt

= b(x1 − x2) (43)

dx3
dt

= b(x2 − x3) (44)

. . . (45)

dxN
dt

= b(xN−1 − xN) (46)

d) Show that the system has a unique fixed point. Find, for a given N , the minimal value
of p for which Hopf bifurcation is possible.

5.3 The Repressilator

We consider a mathematical model of the repressilator as in the paper by M. B. Elowitz and
S. Leibler (Nature 403, 335 (2000)) http://www.elowitz.caltech.edu/publications/

Repressilator.pdf

The repressilator is a synthetic genetic regulatory network consisting of three genes con-
nected in a feedback loop, such that each gene represses the next gene in the loop, and
is repressed by the previous gene. The model is given in terms of 6 coupled differential
equations:

dmi

dt
= −mi +

α

1 + pnj
+ α0 (47)

dpi
dt

= −β(pi −mi) (48)

where mi is the mRNA concentration and pi is the protein concentration of the three
species. In the above equations the mRNA production from gene i is regulated by protein j
with i = 1, 2, 3 and j = 2, 3, 1 respectively. The equations are written in dimensionless units.

a) What is the physical meaning of the three parameters α, α0 and β?

b) Show that the only steady state of the system is the symmetric one, i.e. that satisfying
p1 = p2 = p3 = m1 = m2 = m3 = p.

c) Show that the linearization of the equations around the steady state give:

dz

dt
= Az (49)

where the six dimensional jacobian matrix is

A =

(
−I XC
βI −βI

)
(50)

and where X = −αnpn−1/(1 + pn)2 (as in the paper), while I is the 3 × 3 identity
matrix and C is the cyclic permutation matrix:

C =

 0 1 0
0 0 1
1 0 0

 (51)
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Figure 5: Linear stability analysis of the repressilator for different values of the parameters
n, α and α0. Notice that the unstable region grows when n is increased.

Let λ be an eigenvalue of A with eigenvector (δm, δp). Show that the following relation
is verified:

Cδp =
(λ+ β)(λ+ 1)

βX
δp (52)

d) The Eq. (52) relates the eigenvalues of the matrix C to the eigenvalues of the matrix A.
Given Γ eigenvalue of C express λ as a function of Γ, solving a second order equation.

e) With the help of the result of the previous point derive the stability condition given
in the paper, which is that the steady state becomes unstable if13:

(β + 1)2

β
<

3X2

4 + 2X
(53)

f) Plot the phase boundary between unstable and stable fixed points in the α− β plane
for i) n = 2, α0 = 0, ii) n = 2, α0 = 0, iii) n = 2, α0/α = 10−3. You should obtain
a graph as that shown in Fig. 5. (See Figure 1b in M. B. Elowitz and S. Leibler, A
synthetic oscillatory network of transcriptional regulators, Nature 403, 335 (2000)).

g) With the help of the stability condition, find a set of parameters for which the repres-
silator oscillates. Plot the pi(t) obtained from the numerical discretization of Eqs.(47)
and (48).

13Instability occurs if the eigenvalues of A gets a positive real part. You will find that this is equivalent
to prove that Re

√
z > 1, with z a complex number. Use then the representation z = |z|eiφ to work out the

previous relation

19



5.4 A synthetic genetic oscillator

J. Hasty et al. (Phys. Rev. Lett. 88, 148101, (2002) 14 ) considered a model of a synthetic
genetic oscillator. The oscillator contains two genes CI and Lac, whose proteins concentra-
tions are denoted by X and Y , respectively. The two genes are engineered to have the same
promoter region. Transcription initiates when two CI dimers are bound to the promoter.
If a Lac tetramer is bound to the promoter transcription is stopped. CI acts thus as an
activator and Lac as a repressor. Although there is a large number of chemical reactions
involved, which are described using mass action kinetics, the system is mapped onto a two
coupled differential equations describing the time evolution of the protein concentrations of
CI and Lac. Use the reactions given in Table I of the paper and the quasi steady state
approximation to obtain the dimensionless Eqs. (2) of the paper.

5.5 Delays in protein synthesis

A simple model of protein synthesis producing robust limit cycle type of oscillations is the
following15:

dY (t)

dt
=

k1SK
p
d

Kp
d + Y p(t− τ)

− k2ETY (t)

Km + Y (t)
(54)

Here the protein undergoes enzymatic degradation of a Michaelis-Menten form and ET is
the total concentration of the enzyme. The synthesis term is described by a Hill function with
coefficient p and has a delay: the protein produced at time t depends on its concentration
at time t− τ . We use the choice of parameters as in the paper by Novak and Tyson: p = 2,
Km/Kd = 1, S/Kd = 1, k1 = k2ET/Kd = 1 min−1 and τ = 10 min.

a) Solve numerically the differential equation (54) and show that the solution is oscillatory
of limit cycle type16.

b) Estimate the period of the oscillation; check if your result matches that of the paper
of Novak and Tyson.

14This paper can be downloaded from: http://biodynamics.ucsd.edu/pubs/articles/Hasty02.pdf
15This model comes from the paper by B. Novak and J. Tyson, Nat Rev Mol Cell Biol 9, 981 (2008);

http://www.nature.com/nrm/journal/v9/n12/full/nrm2530.html
16To show that the solution is a limit cycle you can start from different initial conditions and show that

the system reaches the same solution, it may eventually have a phase shift.
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6 Chaos

6.1 The Lorenz system

The Lorenz system is given by

ẋ = σ(y − x) (55)

ẏ = rx− y − xz (56)

ż = xy − bz (57)

with σ, r, b parameters.

1. Find the coordinate transformation that transforms the waterwheel equations into the
Lorenz system.

2. Examine the linear stability of the non-zero fixed points (C+, C−). What is the
characteristic equation that you get?

3. Look for solution of the form λ = iω with ω real. Calculate for which value of r there
is a Hopf bifurcation, where there is a pair of pure imaginary eigenvalues.

6.2 The Rössler system

The Rössler system is given by

ẋ = −y − z (58)

ẏ = x+ ay (59)

ż = b+ z(x− c) (60)

with a, b, c parameters. Notice that this system only contains one nonlinear term, whereas
the Lorenz system has two nonlinear terms.

1. Numerically explore the dynamics of the Rössler system for a = b = 0.2. Plot some
time series and phase space plots for changing values of c. Also draw an orbit diagram
in function of c.

2. Calculate the fixed points of the system and examine their linear stability (for a = b =
0.2 and changing values of c).

3. Similarly as for the Lorenz system, one can try to obtain a one-dimensional map for
this system. Calculate successive local maxima of x(t) for a chaotic time series. Plot
xn+1 in function of xn. What type of curve do you obtain?
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6.3 The logistic map

The logistic map

xn+1 = rxn(1− xn)

can be derived by scaling from a typical growth model with a certain carrying capacity. The
behavior of the map is strikingly different from the behavior of the corresponding differential
equation.

1. Simulate the above map with initial conditions x0 in the range [0-1], for different
parameters r between 0 and 4. Look at both time series and cobwebb diagrams. What
different behaviors do you see?

2. Determine the steady states of the equation and their stability.

3. Draw an orbit diagram in function of r. Approximately determine values of r for which
the behavior changes. The behavior of the logistic map for increasing r is called the
period-doubling route to chaos.

6.4 The sine and tent map

The sine map is given by

xn+1 = rsinπxn

with r and x between 0 and 1.
Another well-known map is called the tent map, defined by

xn+1 = rxn

for x ∈ [0, 1/2] and
xn+1 = r − rxn

for x ∈ [1/2, 1] and this for r between 0 and 2.

1. Similarly as for the logistic map, draw an orbit diagram in function of r. Approximately
determine values of r for which the behavior changes.

2. Compare these orbit diagrams between the different maps. When you observe a period-
doubling cascade to chaos, then calculate the distance in r between consecutive period-
doubling bifurcations, and estimate the following quantity based on the first period-
doubling bifurcations: δ = rn−rn−1

rn+1−rn .
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7 Synchronization

7.1 The period of a nonuniform oscillator

The oscillation period of the Adler system is given by the integral T =
∫ π
−π

dθ
ω−a sin θ , where

ω > a > 0. Evaluate this integral as follows.

1. Let u = tan θ
2
. Solve for θ and express dθ in terms of u and du.

2. Show that sin θ = 2 u
1+u2

.

3. Express T as an integral with respect to u.

4. Reduce the integral to the following form: T =
∫∞
−∞

dx
r+x2

5. This integral also describes the time spent in a bottleneck generated close to a saddle-
node bifurcation. Such bifurcation is given by ẋ = r+x2, with r small and proportional
to the distance from the bifurcation. Evaluate this integral by using x =

√
r tanα and

using the identity 1 + tan2 α = sec2 α.

7.2 Triangle wave in firefly model

When using the Adler equation to model the behavior of the fireflies, the sinusoidal form
of the firefly’s response function was chosen somewhat arbitrarily. Consider the alternative
model Φ̇ = Ω, θ̇ = ω + Af(Φ− θ), where f(φ) is a triangle wave using

φ, for − π/2 ≤ φ ≤ π/2 (61)

π − φ, for π/2 ≤ φ ≤ 3π/2 (62)

and this extended periodically outside this interval.

1. Graph f(φ)

2. Find the range of entrainment.

3. Assuming that the firefly is phase-locked to the stimulus, find a formula for the phase
difference φ∗.

4. Find a formula for the period T of the drifting solutions.

23

thibe
Highlight

thibe
Highlight



8 Traveling wave solutions of reaction diffusion model

8.1 Fisher-Kolmogorov equation

We consider the Fisher-Kolmogorov equation

∂u

∂t
=
∂2u

∂x2
+ u(1− u) (63)

and consider traveling wave solutions of this equation, i.e. solutions of the type u(x, t) =
f(x− ct), with boundary conditions limz→−∞ f(z) = 1 and limz→+∞ f(z) = 0.

a) Using the phase portrait method show that there is a minimal velocity cmin for a
wavelike solution and determine the value of cmin.

b) Consider now an interval [−20, 20] and an initial function at t = 0

uin(x) =
e−x

2

2
(64)

By discretization of Eq. (67) in space and time17 show that the solution evolves to a
traveling wave with the minimal velocity18 cmin.
Note: To test your numerical integration scheme you can first “turn off” the reaction part

and to simulate only the diffusion equation, with the initial condition (64). You can compare
the numerical solution with the exact analytical expression obtained from the solution of the
diffusion equation.

c) An approximated solution can be found by the following change of variable ξ = z/c. Defining
g(ξ) = u(z), t he Fisher-Kolmogorov equation becomes

1

c2
g′′(ξ) + g′(ξ) + g(ξ) (1− g(ξ)) = 0 (65)

where the prime indicate the derivative with respect of ξ. As the minimal velocity is cmin = 2
we can assume that the second derivative term is small and write:

dg

dξ
= −g(1− g) (66)

Solve the previous equation using the separation of variables and compare this solution with
the wave found in (b) by numerical integration.

17To discretize the equation split the interval [−20, 20] in N points and consider un(t) the value of the
function at point n. These satisfy the set of equations:

du1
dt

=
1

∆x2
(u2(t)− u1(t)) + u1(t)(1− u1(t))

dun
dt

=
1

∆x2
(un+1(t)− 2un(t) + un−1(t)) + un(t)(1− un(t)) n = 2, 3 . . . N − 1

duN
dt

=
1

∆x2
(uN−1(t)− uN (t)) + uN (t)(1− uN (t))

where ∆x = xn+1 − xn. The equations are integrated numerically in time.
18The convergence to the minimal velocity is known to be very slow as discussed in this paper: E. Brunet,

B. Derrida, Shift in the velocity of a front due to a cut-off Phys. Rev. E 56, 2597-2604 (1997). So the wave
velocity that you determine in your numerical calculation can be somewhat smaller than cmin (something
like 10% smaller).
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8.2 Traveling waves in bistable systems

The homogeneous steady states in the Fisher-Kolmogorov model are unstable (u = 0) and
stable (u = 1). We consider here the following model:

∂u

∂t
=
∂2u

∂x2
+ u(u− a)(1− u) (67)

with 0 < a < 1. In this case there are two stable homogeneous fixed points u = 0 and
u = 1, and an unstable one u = a. We look for solutions u(x, t) = f(x− ct), with boundary
conditions limz→−∞ f(z) = 1 and limz→+∞ f(z) = 0. We fix a = 1/4.

a) Using the phase portrait method show that there is a unique velocity c∗ for a wavelike
solution. Determine the value of c∗ numerically as follows: in the plane (u, v), with
v = u′ we seek for a trajectory connecting the two saddle nodes (1, 0) and (0, 0). Start
from (1, 0) and determine the eigenvalues of the Jacobian λ±. Use an initial point
(u0, v0) in the vicinity of (1, 0) along the repulsive eigenvector (that corresponding to
λ− < 0) and an initial guess for c. Follow the flow in the phase plane (u, v). If c is too
small the trajectory will cross the u-axis before reaching the origin. If c is too large
it will flow to infinity. In this way different values of c could be tested until the right
(heteroclinic) trajectory connecting the two saddle nodes is generated.

b) (Facultative) - Using appropriate intial conditions u(x) at time t = 0 show numerically
that the solution evolves in a traveling wave with the velocity determined in (a).

8.3 Special solution of the Fisher-Kolmogorov equation

a) Show that

u(z) =
1

(1 + Aez/
√
6)2

(68)

where A is an arbitrary constant and z = x − ct, is a traveling wave solution of the
Fisher-Kolmogorov equation:

∂u

∂t
=
∂2u

∂x2
+ u(1− u) (69)

with wave velocity equal to c = 5/
√

6.

b) Plot the solution (68) in the two dimensional phase space (u, v), with v = du/dz. This
corresponds to a heteroclinic orbit connecting the two fixed points (1, 0) to (0, 0). (see
https://en.wikipedia.org/wiki/Heteroclinic_orbit).

c) Compare the solution (68) with that obtained from numerical integration in the exercise
8.1. Describe the differences in the two waves.
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9 Additional problems

9.1 Hopf bifurcation and polar coordinates

Consider the system

x′ = px− y − ax(x2 + y2)

y′ = x+ py − ay(x2 + y2)
(70)

1. Perform a stability analysis of the equilibrium state (0, 0). Show that for a certain
threshold value of p, the equilibrium becomes unstable. At this threshold value, the
system undergoes a Hopf bifurcation.

2. Transform the system to polar coordinates (r, θ) with x = r cos θ and y = r sin θ, derive
ODEs that describe how r and θ change over time.

3. Analyze the resulting system, and especially the r equation. What are the steady
states for r, and what kind of solution does this describe in the (x, y) plane?

You will find periodic solutions, of which the amplitude depends on p as
√
p. This is typical

for a supercritical Hopf bifurcation.

9.2 Epidemic model

In this problem you are asked to analyze a model which describes an epidemic. Typically,
in epidemic modeling, the population is divided into different classes or compartments. We
consider three compartments: S, the susceptible (healthy) population, I, the infected popu-
lation and R, the recovered population. The recovered population has temporary immunity,
but people can lose this immunity and go back to the susceptible class.

Schematically:

S I R
β
N SI

γI

µR

The expressions above the arrows describe the rates by which people go from one com-
partment to the other. The equations describing this system are:

S ′ = − β
N
SI + µR

I ′ = − β
N
SI − γI

R′ = γI − µR

(71)

1. Interpret: why is the rate by which people become infected proportional to SI/N?

2. Show that the total population stays constant (nobody dies, nobody is born). We take
the total population size to be N . Use this fact to eliminate the R variable and write
the system as a two variable system.

3. Choose β = 2, γ = 1, mu = 1 and draw the phaseplane together with some trajectories.
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4. For arbitrary β, γ, µ, determine the steady states and their stability analytically. In-
terpret your results.

You will find that the existence and stability of a steady state where the disease is
endemic (ie. there is always a certain number of infected people at equilibrium) depends
on the ratio β/γ. This value is called R0, the average reproduction number. This is one
of the most important concepts in epidemiological modeling. The value of R0 is equal
to the average number of people an infected person can infect when it is introduced in
an otherwise completely susceptible population. Highly contagious diseases have high R0

numbers. Having an estimate of this number is crucial to implement vaccination measures,
for example.

9.3 Beyond QSSA: matched asymptotic expansions

We take another look at the enzymatic reaction

S + E
k1−⇀↽−
k−1

C
k2−→ P + E,

where we assume that there is a lot more substrate than enzyme. This leads to Michaelis-
Menten kinetics in the quasi-steady state approximation.

After nondimensionalization, the equations for this system are

u′ = −u+ (u+K − λ)v

εv′ = u− (u+K)v.
(72)

Here u = s/s0, v = c/e0 are the normalized amounts of substrate and enzyme-substrate
complex. The parameter ε is equal to e0/s0 and is by assumption small. The initial values
to be used are u(0) = 1 and v(0) = 0.

Because ε is small, one usually takes v′ = 0, from which the Michaelis-Menten formula

v =
u

u+K

derives.

a) Simulate the system numerically for K = 2, λ = 1, ε = 0.1. Plot, on a single graph as
function of t, u, v and u/(u+K). Does the QSSA approximate v well at all times?

There is an issue around t = 0. This can be seen, for example, by looking at the initial
conditions. The QSSA v ≈ u/(u+K) would give v(0) = 1/(1 +K), whereas in the original
system v(0) = 0. This shows that something is missing. In this exercise we will derive an
analytical approximation which is valid at all times.

b) Solve system 72 for ε = 0. The second equation gives the QSSA for v. Substitute
this into the first equation and solve for u by separation of variables. You will find an
implicit equation for u. You will also find that there is one free parameter left. This
solution is called the outer layer

c) Next we switch the time variable. Set s = t/ε. Note that this timescale is suitable for
studying what happens around t = 0: when t ranges from 0 to 1, for example, s ranges
from 0 to 1/ε. Show that the new equation, with time variable s, are
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Figure 6: Left: composite expansions for u and v. Middle: comparison of the composite
expansion with the numerically obtained result and the QSSA. Right: zoomed version of the
composite and numerical solution of v, for small times.

du

ds
= ε(−u+ (u+K − λ)v)

dv

ds
= u− (u+K)v.

(73)

d) Solve the system for ε = 0 exactly, using the initial conditions u(0) = 1 and v(0) = 0
of the original system. Call the resulting functions of s U(s) and V (s). The solution
is called the initial layer.

e) The outer layer still has one unknown parameter, which can be fixed by a so-called
matching procedure. We ask that U(s), V (s) for s → ∞ are equal to u(t), v(t) for
t→ 0. Use this to fix the remaining parameter.

f) Now we have U(s) and V (s) with s = t/ε which are valid in the beginning, and u(t) and
v(t) which are valid for large times. They overlap: U(∞) = u(0) and V (∞) = v(0).

The composite expansion is given by

uc(t) = U(t/ε) + u(t)− overlap

vc(t) = V (t/ε) + v(t)− overlap.

Determine the formulas for uc and vc (note that you will have to leave u(t) as it is in
the formulas, since this is only determined implicitly).

g) Plot your composite solution and compare with the exact solution of part (a). You will
need for each timestep to solve the implicit equation for u. You can use the built in
solve commands in Python or Matlab for this. The Figure below shows an example. In
the middle plot you can see that the composite formula and the numerical solution are
visuall indistinguishable for v! Try different values of ε. When does the approximation
break down?
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