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Intro

This text contains solutions to the notes of Statistical Mechanics by E. Car-
lon (2014). All of these solutions are written by students, so don’t take any
results in here at face value. I happily receive any corrections or suggestions
for the solutions at alexander@wina.be. Any solutions you would like to add
to this text, you can send to that same email. Thanks to Quentin Decant
for his corrections.
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0 A Brief Review of Thermodynamics

0.1 Internal Energy of Ideal Gas
The first law states dE(S,V) = T(S,V)dS — P(S,V)dV. From this we

derive
dF =d(E —TS)=—-SdT — PdV

This gives us

oF
ar|, = °
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Differentiating the last expression with respect to V' gives us
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0.2 Adiabatic transformation for an ideal gas



1 Random walks, diffusion and polymers

1.1 One dimensional random walk

Call the probability that you take a step s, to the right pg.

a) The probability that the walk of N steps performs n steps to the right
is equal to P(n,N) = <Jr\zf> PRl —pr)N "

b) Consider the function

F(N,2,y) = io (ﬂj ) N
oy

n

:E—I-y)N

Now notice that

Of(N,x,y)
ox

N

n=0

Nz(z+y)N 1=z

f(n7x7y)

So we have Npg = pp 2 o = (n). In the same way

T=pR,y=1—DpRr

e e () = pr gy (G 0) | L, = Vot NOV = Up

The variance is then Var(n) = Npg — Np% = Npr(1l — pg).

c) Now call z = 27]1\/:0 sn. We see (xr) = N(sp) = 0. We also find
(2%) = L (snsm) = Lasn) = N{s§) = N + (1 = pr)®).

1.2 Diffusion with an absorbing boundary

a) If we mirror the solution by putting the same amount of particles but
negative at the beginning at —zg, so ¢(z,0) = N(6(x —x¢) —0(x+x0))
and do not impose that the particles be absorbed. We see that any of
the particles arriving from the right, will be cancelled by the “negative”
particles coming from the left. The solution is the sum of the two
gaussians



oz, t) = \/ZZTt [exp <—<36;D?>2> P <_W>]

Now if we only take the right part of this solution, and let for every
x < 0 the solution be zero, we have the solution to our original prob-
lem.

b) Using the taylor expansions of the exponentials we see

N (x — xo)Q (z+ $0)2 4
c(a:,t)—\/m 1Dt + D1 + O(z%)

N
= [4zzo+ O@=YH].
ADt/ArDt (420 + O()]

So ¢(x,t) vanishes linearly around = = 0.

c¢) The total number of particles at some time t is equal to

—+00

N(t) :/ c(z, t)dx
0
- = /+Oo ex —7(33_:60)2 —ex —7@4_%)2 dx
= VanrDi Jo P 4Dt P 4Dt
N —+oco xz “+oo .’EQ
= —— \)dx — —— | d
4n Dt [/xo eXp< 4Dt> ! /xo eXp< 4Dt> x]
xo x2 +o0o 1’2
=z e (i )= [ o (i) o

1.3 Diffusion with a reflecting boundary

4

We have a similar situation as in the previous exercise, consider the begin
situation that N particles start at zg and —xy. Now each time a particle
arrives from the right to go to left, a particle will arrive from the left to go
to the right, as if the particle from the right bounces back. The solution is

oo, t) = \/j:ﬁ [exp (-“2;;)2) + exp (-W)] |

We have



ox Var Dt
=0.

dc(0,t) N [2(964—1;"0) exp (W) — 2(9”;;;()) exp (W)]

At some point ¢/, we have ¢(0,t') = ¢(zo,t'), so

2 2

X xX
2 —0 ) =1 -0
eXp( 4Dt’) +eXp< Dt’)

2
Denote with x = exp (—%), then we solve the following equation

1-2z+2*=0

This equation has two real solutions, 1 = 1 and x9 ~ 1/2. If z = 1, then
o3

t' — oo but in the other case we have t/ = ——~+0o—.
4D log zo

1.4 Fluorescence recovery after photobleaching

The general solution is given by

c(z,t) = /dyc(y)Gy(x,t).

So in this case we have

c(z,t) = \/% [/O:exp (—W) dy + /a+ooexp <—($4DZ)2> dy] .

So at x = 0 and for ¢ > 0, we see

00 = [1= i [ ew (5 ) ]
c(0,t) =c — exp | —— .
0 1Dt ), P\ Tapt )Y

For the half-recovery time 7 we have

1 a y2
1 Y Vay| = (0,7) = co/2




In other words

=i Lo (i)
- = ex <
2 A7 DT J_¢ P 4Dt J

1 a/N4DT
= NG i exp(—u?)du
a
= Erf
: (\/4DT>

Now if we define v = (2Erf~1(1/2))72, we find that v = % or D= 'yé.

1.5 Reaction-diffustion equation: a simple example

Notice that

829(1', t) ot 320(:5, t)
P8 =P oz
_ ot Oc(x, 1)
_ at )
- ot
and
dg(x,t) B _ et Oc(, 1)
rank ag(z,t)+e 5
holds.
Thus we can conclude
2
Og(@,t) _ 07g(z.t) ag(w.1),

ot Ox?
so g(x,t) satisfies equation (1.7.4).

1.6 Radius of gyration of a polymer
Notice that

%
X; = Xg + E r;.
k=0

We also see that the following holds



N
(N + I)Rg = Z (X7 + Xgy — 2X; - XM ) -
=0

We know that Zi]\;() (x; - XcMm) = <XCM Zf\io xz-> = (xcm - (N + Dxem) =
(N +1) (x¢y), so we see

N
(N+1)R; = <Z(x3 — (N + 1)X%M)>

=0

Sy

=0

1
TN+ <Z(X?+X? —2Xi'><j)> AN <Z(Xi—xj)2

.7

—

Using the previous relation we find

(N+1)2R§=Z<<’: rk—irk> >

where we have dropped the factor 2 because we only sum over ¢ < j. Further
we calculate

2

J
(N+1)2R§=Z<< > rk> >
i<j k=i+1
i
=3 D D (),

1<j k=i+1l=i+1

When k # [, the random variables r; and r; are independent of each other.



So (rj - ry) = a25k,l. Continuing the calculation we see

So we conclude

J J
(N+12RZ=D "> > a6y

1<j k=i+1l=i+1

1<j k=i+1
N j-1
=a®) > (i)
=0 i=0
N
o Jl—1
=G2Z<f— i >>
7=0

6
R a’N(N +2)
9 6(N+1)
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2 Ensembles in Classical Statistical Mechanics

2.1 Surface and Volume of a high dimensional sphere

a)

Notice that

Iy = /dee_X2
://.../d:nldzz:g...dﬂm\ze_zz‘””z2
= /divlex%/deBmg.../da:Nex?\f
) N
= </dazle_rl>

=TIV,

x2 N/2

The gaussian integral [dze™™ is equal to /7, so Iy = 7'V/2.

b)

Denote with Ay the surface of dimension N with radius 1. We find that if
we convert to polar coordinates

In = / / rN=le=" drdQ
0 AN

o0 2
= MN—1/ rNle ™ dr
0

Now substitute with u = 72, so rN=1 = «V/2-1/2 and du = 2u/2dr. We
conclude

pn—1 [
Iy = _/ uN/2=1e—ugy,
0

2
_ unal(N/2)
2
So we conclude uy_1 = IE(WTN//;)

11



c)
- - 73/2 -
Weﬁndthat,ul:%Z%ZQW&HdM:%:ZL

2.2 Ideal gas in the microcanonical and canonical ensemble

a)
Notice
Q(E,N,V) ! / dpi...dpyV»N
y AV, V) = SN 1---aPN
Np3N Zp?/2m<E
VN(Qm)SN/Q

dU1 PN duN.
NIR3N /S3N(\/E)

where we used the substitution u; = \/F;Lm and S3xn(VE) denotes a sphere

in 3N dimensions with radius v'E. The last integral is just the volume of
the 3N sphere with radius V'E so

VN (@2mrE)3N/?
Q(E,N,V) =
(B.N.V) = NavTGN/2 1)

(Y N amnE 3N/265N/2
N 3N ’

where we used N! ~ N¥e=». The microcanonical density of states is just
partial derivative of the microcanonical phase space with respect to E. So
we see

OQ(E,N,V)
OF

_ §VNN1—N (4m7r)3N/2 [3N/2-1,5N/2
2 3N '

w(E,N,V) =

b)

The entropy is equal to

V. 3N dmnE 5N

12



We also see that

3 3N dmnE 5N
logw(E,V,N) = (log=NlogV — Nlog N + log N + — log mr —log B+ —
2 2 3N 2
_ S(E)
~
c)
S(aE,aV,aN) 3N dmnmE 5N
= aNlog — —1 —
ks B g( 3N> 2
= 2 S(E,V,N).
kp
d)
Notice
p=1%
Vlgn
N
:TkBVa

so PV = NkpT, which is precisely the ideal gas law. We also see that

1_os
T OE|yy
3N
_kBﬁv

so B = LWEBT.

e)
We calculate the partition function as follows
_ 4

T NI
N (m)3N/2

N

B
N!

13



This gives us

orE:%.

2.3 Harmonic oscillators in the microcanonical and canonical
ensemble

a)

Consider the substitution u; = F and v; = ./ w;q;, SO We see

1
Q(E,V,N) = N'th/Z p?+m $q$<Ed D1...dpNndq ... dpN

i 2m

_ @m)V2y/2/m” [N -

N3N

(2
~ (2nE)NN 2N 2Np 3N H w;

2N
= 2rE)Y (N) W
with w?V = [[; wi. The entropy is then equal to
S(E,V,N) =kplogQ(E,V,N)

= kg !Nlog (27E) + 2N —2Nlog N + ) " w;

i

b)
Now we have
1_os
T OF V.N
N
— ka

14



c)

First we calculate the partition function for 1 harmonic oscillator

Z; dpdqe—ﬁ(pQ/(Qm)*‘mw%qQ/?)

B3

_ 2mm 2 =
I5] mw?ﬂ

_2r 1

B whd

So the total partition function is equal to
N
2
In=|-—) w N
" <5h3>

_810gZN
op

Finally we have

E =

| =

or B = NkgT.

15



2.4 Maxwell speed distribution
a)

We calculate as follows
1 N Pi
W)=y <;‘5(V‘ m)>

= ! 3 drs Pi r
~ N-NW3NZ(N,V,T) ;/ (V - g) exp {—AH(')}

— N!h3NZ1(N, VT /dDS <v — %) exp {—BH()}.

Let’s calculate that last integral, we see

/dF5 (v-2) exp{ﬁmm}:/dfexp{ﬁ <sz2+ ] 21);)}
=2

1=

N o
:eﬁmVQ/z/dFexp{—ﬁ I)i}.
2m

=2

That last integral is very similar to the integral of the partition function, it
is simply the partition function divided by a gaussian integral. So we have

p1 CNWWNZ(N,V,TYmPR e
/dF5 (v - E) exp{—FH([I)} = @rkpT) 2 .

So the velocity distribution is equal to

efﬁmv2/2‘

=
|

Y
[\

e

| 3
~
N——

vlw

b)
The speed distribution is equal to

o(v) = / dvo (V] — v)6(v)

3
m 2 2
— —Bmwv?/2 dv.
(27TkBT> ‘ /|v|:v v

16




That last integral is simply the surface area of a sphere in 3 dimension with
radius v. So we the speed distribution goes as follows

3
m 2 2
— 42 —Bmu /2'
g(v) <27rkBT> Tve

The probability that kinetic energy lies somewhere between 0 and E we can

calculate as followed, where v = H% and v/ = \/%E/,
3 v
E/ 4 N2 —6E, /
/ W(E")d (27rkBT> 7T/O (v')%e dv

3
2 E ./ ,
:( o )477/ 28 -8 qp.
0

27TkBT m3/2

E
= (2rkpT) 242 / VE'e PP dE’
0
Differentiating this equation with respect to E gives us

W (E) = 2r(rkpT) 2 VEe PE.

c)

First we calculate <v + v2), because of symmetry obviously < > = <v2>.
So we have <v + v = 25/ Flnally we see

m 2 2
dVv2 —pBmuv< /2
27rk:BT) / V€
m

3 2
2
— —Bmuv2 /2 —Bmuv2 /2
<27rk:BT> /dvxv ‘ (/dvye ' >

m \(_ 20 [or)o2r
2nkpgT mop\ mB) mp

m \E (P,
2rkpT m m

17



The probability that v2 + vg > <v§ + U; > is then

bl
P= ( m > / dvmdvydvze_ﬁmv2/2
2kgT vi+vi>2/Bm

m

—_ —Bm(v2+v2)/2
= e v/ 2 dv,du,,
2rkpT vi+vi>2/Bm B

because the integral over v, is simply 62—7’; For the other integrals we

revert to polar coordinates

m 2 2
= / e P2 drd
2rkpT )~ V278m Jo

+oo
_om oL pmezy
kgT | Bm 2

Bm
-1

=€

d)

The average kinetic energy we can calculate as follows

3
S
3kpT

i

The probability that £ > (E) is then

3
m 2 2
P = 477/ v2e MYt 2 gy,
(27TkBT) v2>3/Bm

2 3/2
= m ’ 477/ 2 u26_"2du,
27Tk'BT u2>3/2 Bm

18



where we have substituted with u = %”v. This gives us
4 [ 2
P=— wle " du
VT J3/2
~ 0,21

2.5 Ideal gas in a gravitational field
a)

Denote with V' the volume of the container. Let’s call r the radius of the
cylinder. We calculate the partition function as follows

N
j/dpe—ﬁp%«mn)j[dqc—ﬁmg%>

3/2 b N
27Z7T> 7T7“2/ dze_ﬁmgzl

<2m7r>3/2 2 (efﬁmga _ eﬂmgb)] "

pmg

N N
AL (e )]

where Ay = h = The free energy is then

Vv2mrkp
F(N,V,T) = —kgTlog Z(N,V,T)

A
= kpT {NlogN—FN (—BIOgAT—Hogﬁ

mg

+ log (e_ﬁmga — e_ﬁmgb) — 1>] .

With A =7r2 and 2z =b — a.

b)
The work being done is equal to

dW = —Fyda + Fpdb

19



where [, is the force on the lower piston and F} is the force on the upper
piston. So we have

oF
o
So calculating this
fmge=Pmee NmgePmga
Fo= Nkl gge o hmgb ~ g=Fmga — g=Bmgb
B — nge‘ﬁmgb

e—,@mga _ e—ﬁmgb

)

The hamiltonian remains unchanged when we interchange particles so (r — r;) =
(r —r1). Now we can calculate

pl(r) = N (r —r1)

N
1 / _8p2 _ —Bp2 _ .
= v | dpie Bpl/(Qm)/d(r—ql)dqle pmgaq. /dpie 5Pi/(2m)/dqie Bmga;,
— 13N !
Z(N —1)h ZI:IQ

= #ﬂe—ﬁmgz 1 (e—ﬁmga _ e—b’mgb) M
Z(N — 1) \3N fmg

B NBmge Pmez
efﬁmga _ efﬁmgb

where Z-r = z. So

Nmge Pm9z
e—ﬁmga — e—ﬂmgb)
N Bmge=Pm9z
A (efﬁmga _ efﬁmgb)

p(r)

A
= kgTp'(2)

p(z) = Al

= kpT

= kpT

20



2.6 Energy fluctuations in an ideal gas

1
2\ _ 2 —BH(T
(E?) = !hSNZ/”H(F) e Mg

2
L9 / ¢~HT) gp

T NIWNZ 92
_ Z_102Z
op%’
We already know the identity (E) = — alggz , 5o we can conclude

dlogZ 0 Z_l(?Z

05> ‘w( 86)
9z _,07\?
-5 - (275)
= (E%) — (BE)*.

In the ideal gas we have E = _81§gZ = % So we see

0%log Z
Var(E) = 952

9 (3N
N 85(%)
3N

=3

Var(E) 3N 482 _
(E)? 282 9N?

Ultimately we have

21

= :%Nv which goes to zero as N — +o0.



2.7 Generalized equipartition theorem

Notice that for any ¢ we have

oH B
ODi .z = sgn(pi.a)islpial’™
0z = sgn(giz)virlgial !
These relations give us
E = (H)
N d
=3 ilpia "+l aia ")
i=1 =1
33 (2 () a2
i=1 =1 ngpzx Za:aq“r ’

where the summation over x goes over each coordinate. The equipartition
theorem then gives us

Py (Lo D hur

=1 z=

1
N <3 ”) dkpT,
Sr

The specific heat is then easily calculated as follows
cy =N <5 ”) dkp.
sr

Now the transformation v; — 3;1' leaves the specific heat unchanged. For
the case of the three-dimensional harmonic oscillator we find F = %N kT
and cy = %N kp.

22



2.8 Harmonic Oscillator in polar coordinates

a)
We calculate the one particle partition function as follows, with the polar
coordinates p? = pm% —i—pg, 0 = bgtan (%), r?2 = 22 +9? and ¢ = bgtan (%),

4n? [ 8 © mpw?
Zh = / pe_2mp2dp/ re” T " dr
0 0

h2
472 [—m - e 1 _mgﬁrz o0
= —_— —e€ m el
h? | B 0 mBuw? 0
42
2 32h2
b)
The kinetic energy is then
B =2+ )
m., . . . N2 .. N2
= 5((rcos¢ —rsing - ¢)° + (rsing + rcos ¢ - ¢)°)
_ T2
2
So the conjugated momenta are
pr = mfr,
Dy = mr?é.

The hamiltonian then becomes

1 . 2,.2
H = %(m%ﬁ + m27“2¢2) + mo; r

1 2+P3¢ +mw2r2
Tom \Pr T2 2

c)

The one particle partition function is now given by

23



P2
Zl = 1 /e QmPT‘dp / _Bmw T2/2d / %nd':zdp(b/de
_ /2m7r/ —Bmw?r? /2 /27;7rd

e~ Bmw 2r2/2
- h2ﬁ [_ Bmw? ]
_ 472
= g
d)
e)

The partition function of N particles is now given by

Z
N

BN 2N
~ N!'\wph '

logZ ~ N — NlogN+2N10g< 5h>

Z(N,V,T) =

We also find

So the internal energy is equal to

The specific heat is then

=2Nkp

24



2.9 Diatomic molecules (1)

a)

Calculating the partition function for one diatomic molecule gives us

1
Z1 = —5 [ dridrze B lr1—raf?
A
-V dre=B5T°
A%

Where we used the substitution r = r; — ro. We can approximate this
integral by simply integrating over entire R? instead of just the volume V.
Since for large volumes V, the factor e=# Sri-r2l? Gies off exponentially fast,
this is a good approximation. We see

2 3/2
Z1 ~ 16 <ﬂ-> .
X6\ BK

The total partition function is then given by

VN o \ 3N/
svvn- T ()
NINN \ BK
The free energy is given by
1 3N 27
F=—-(—-N+NlogN+6N1 — N1 ——log—|.
ﬂ( + Nlog N + 6N log Ar ogV 5 Og5K>
b)
The specific heat is given by
ok
“ =T
B _82 log Z 9B
op2 oT
N
s
s kpT?
_ 9Nkp
2

25



c)

Notice that

ZGXp ( 3 [p1+P2 + K|r1 o r2|2])
(1= o) = 5 [ —ma o ar
exp p1+p2 + K’rl _ I‘2‘2]> .
-7 (3)ax/ -

2 6long

B OK
3
= 5K

2.10 Diatomic molecules (2)

)

We calculate the partition function as follows

1 N
Z(N,V,T) = NI ( / dry / dr2666|”27"0|>

When we take ro to be constant to calculate the second integral, and de-
note with r = r; — ro. The integral then becomes if we turn to spherical
coordinates

I= /drge_ﬁel’”l?_m
_ / dre~Pelr=ro
= /drdﬁdgp cos Or2e~Pelr=rol

The term e—P¢” =70l will become small for large r, so we can approximate
the integral over the volume V with the integral over the entire volume.

ro 0o
I = 4ﬂ_/ T,Qeﬁe(r—ro) 4 4ﬂ_/ TQeﬁe(ro—r)
0 0

The primitive of the functions we are integrating can be calculated using
integration by parts. The primitives of the first and second functions are
respectively
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2
eﬁe(r—ro) L o 2r + 2 ’
56 6262 B?) 63

_ 655(7”0_7") ﬁ + 277' + i
,86 ﬁ262 5363 '

So the integral simply becomes

I —4r (7"3 2ro 2 2‘3_6%) . (_7«3_27«)_

Be B2 T B3e3 B3¢

2r2 4 — e Pero
=4r (=0
”(ﬂe RS )

Finally we have for the partition function

(8rV)N

N
Z(N,V,T) = o (8268 42— e7Pm)

~ N1(Be)3N(Ar)
The free energy is given by

_logZ
g
1
~ 3 (N — Nlog N + 3N log(Be) + 6N log(Ar)

F =

+Nlog(87V') + N log (QQEQT?) +2- e—ﬂero)) ‘

b)
The internal energy we can calculate by
Odlog Z
op
_ 6N N (Be*rd + erge=Pero)
B 52627’% 4+ 2 — e Bero ’

E =
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The specific heat we then find as follows

_ 0B
V=T
. OB
P o(1/p)
_ 08 0 ( Perg+ erge P
=6Nkp + NkBa(l/B) a8 <ﬁ2627"% 4+ 2 — e—Bero

2.11 Langevin’s theory of paramagnetism

Consider the Hamiltonian

of a system enclosed in a sphere of radius R. We use polar coordinates
so r; = r;(sin; cos ¢;, sin ; sin ;, cos ;). Now calculating the partition
function we have

1 R ) 27 ™
= — . . : L uBBcosay g .
7 = NN 1:[/0 T dn/o dsoz/o sin a;e doy

3\N ™ N
= L (@R sin aetBBcos g
NN T3\ g '

Using the substitution u = cos « we find

s —1
/ sin aetPBeose o = —/ etBBU gy,
0 1

_ 2sinh(ufSB)
-~ wpB

The partition function then becomes

1 (47TR3 sinh(uﬁB))N

VA

NI 3138
1 (Vsinh(uBB)\Y
CONIAN 1BB '
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The induced magnetic moment we can calculate as follows

N
= <Z J4 COS ai>
i=1
1 N N
/ Z 14 COS ujetPB iz cos o H dr;
i=1 i

ZNINN

1 1 a ,uﬁB Zf\[:l COS &¢; H
=— ___— dr;
ZN'\\3N B OB i
_10logZ
B 0B

This we can calculate so

M= l(?[N log(sinh(uBB)) — N log(usB)]
OB

( cosh(ufB) 1 >

™

"sin(uBB) ~ uBB

_N
B

Nu (coth(uﬁB) — M;B> .
b)

The magnetic susceptibility per atom is given by

_1oMm
XTNoB

B 25 3} (cosh(uﬁB)_ 1 )
~ " 79(upB) \sinh(uBB) ~ ubB

(smh (uBB) — cosh?(uBB) 1 )

sinh?(u6B) (uBB)?

=1 Gy ~ aom)
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2.12 Van Leeuwen’s theorem

2.13 Stretching DNA
a)

Notice
BF-(rp—r
ZL_/H<4b2 ’b’ )) (L O)
db
_ BF-(rp—r1) 1 _BF-(ri—rq)
/H<4 ER b))e /47rb2e

=Z51721.

So we have Zj, = ZF. We can calculate Z; as follows

dby F-b
2= [ £ a(lbol - by

We revert to polar coordinates, where we choose the z-axis along F such
that F - bg = F'bycosf. So we see

5( bo| — b " : cos o
= / db0b3‘47r|b2) /0 df sin felor cos? /0 dp

1 T
= / d0 sin PePbF cost
2 /o

1 —BbF
= —_—— / eu
208F Jgpr

sinh(SbF')

1
~ BbF
1.
:}smhf

where we used the substitution v = SbF cos 6 and have denoted with f the
product BbF.
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b)
Notice that
JePEFT  §ebFra
OF — OF
= Broe’Fr

Now for the average extension of the chain along the x-direction, we see

X = <.CEL—$0>

/H (4 OIbif = )> (z, — @) T rL=ro)
- ﬁ;L /}_[ ( §(|bi| — )> ;FeﬁF-(rLrO)

_ 1dlog Zp,

~ B OF

Olog Zp,
of

The previous part of the exercise gives us

=b

log Z1, = Llog(sinh f) — Llog f.

So finally we have

B Lcoshf L
X"’( sinh f _f>

=1Lb (coth(BbF) - 5;F>
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c)

Expanding X in terms of f we find
1+ L4+
X:Lb<+§c2+—1>
fa+L+.00) f
Lb<1+f2/2_1)
f\1+f%/6
L

f2
f (3(1 + f;))

S

~
~
~
~

where we made the approximations cosh(f) ~ 1+ f2/2, sinh f = 1+ f2/6
and 1+ f2/6 ~ 1. Ultimately we have F ~ 321X

Lb2
d)
We know
el + e/ 1
X=Lb|——"-—7——
(==-7)

1 2
—h(1--— 2
b< / 1—e2f>

At high forces, f too wil be large so we can approximate ﬁ ~ 0 and so

1
X~Lb|-1--
(1-7)

kT 1

This gives us F' = 4= 17— which is not in agreement with experiment. 1

'I’'m not entirely sure about the last section of this exercise, anyone willing to confirm?
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2.14 Stretching a polymer: the low force limit

We recalculate the partition function

L
Zy, :/Hdbie_ﬁH(bl’b2""’bL)eBF'(rL_rO).

=1

Denote with Z} the partition function of the system in absence of the force

L
2= [ T o

i=1

and denote with X’ end to end distance in absence of the force, so

L
1
X' = Z//Hdbi(JUL — xo)efﬁH(blvbz,...,bL)
LY =1

Approximating the second exponential by e’F("L=r0) ~ 1 4 BF - (r, — 1)

We find that

L
Zu [ [ dbie 10w0200) (14 F (v~ x0)

i=1

BF [
~ 7 (1 + o / [[ dbieH®Brbarsbr) (g — wo))
L i=1

~ 71 (14 BFX')
In the previous exercise we proved that X = %81%%% so we find?

0

3F (log Z}, + log(1 4+ BFX"))
_ X

14 BFX'

X =~

~
~

= @ =

2.15 Worm like chain

3

2Obviously this is false, I would be very grateful to anyone who can show me a more

correct method.
3Working on this
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a)

Consider the unit vectors #; and fiH in polar coordinates

t; = cos 02 + sin 6 sin g + sin 6 cos ¢

tir; = cos @'z + sin @' sin ¢'§ + sin 0’ cos o'
2.16 Stretching a gaussian polymer

If we write r; = R; — R;_1, we see

ZL:/HdI'@ ﬂKZl 1 1+5F21 1T

This we can factorize as follows

Zy, = (/ dr; ¢~ PET]+BF- r’)
— HZ1
= (Z)"

o Tpyi. Since the partition function

Now notice that Ry, — Ry, =
(ri)(rj) when i # j. All of this gives us

factorizes, we have (r;r;) =

= Z < n+z> + Z rn-H rn+]>

i=j i#]

We find that because we can interchange all of the vectors r; in the hamil-
tonian that (r;) = (r.) and (r?) = (r?). So we have
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(Ronsn = Rn)?) = m (x3) +m(m — 1) (rp)?

because if i and j vary from 1 to m there are m ways for i to be equal to j
and m(m — 1) ways to be different from each other.

(rp) = Zl/ | | dryrpePE i v HAE i v
L ;
7

L—1
= ZL ere_BKr%+BF'rLPL/ H drie_ﬁKZiLzl r24+8F- Y1, T
L i=1

_ ZL*l d —ﬁKr%—i—ﬁF-rL

- ZL rre ry.
L—1

We have proven before that Zggl = Z%L = Z% Now if we write F =

1

(Fy, Fy, F.) and r; = (x;,y4, 2;) we see

(i) =

1 /er$L65KrQL+BF-rL

A
1 0 2
— d —BKr7+BF rp
7 / "or,°
1 o4
1 dlog Z;
B OF;
In an analogous way we can prove that <r%> = _%813%21. Now all that is

left is to calculate Zp; if we identify x with 1, y with 2 and z with 3 we see
Zy = /dreﬁKrH'BF"r
3
_ H /dae—ﬁKa2+BFaa
a=1

2
The gaussian integral is equal to [ dre=ae* b — \/ge%a for any a > 0 and
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b e R. So we have

Finally we see

a=1
& (0(-Roesr) + 57
> o,
1 - B2F2
F2
el
and
T
0 (-Sog(8m) + 52
T B 0K
__3 . B
28K ' 4K?
3
= K + (rp)? = a2

Ultimately we find that

4Obviously this answer differs from that in the text, anyone spotting my mistake?

36



<(Rm+n - Rn)2> =m <I‘%> + m(m - 1) <rL>2

2 F?
pr— - 1
ma* + m(m )4K2
Fa \2
=ma? +m(m — 1)a* <3k§T>

2.17 Rigid monomeric chain

The hamiltonian is given by

N . : :
Now because there are ( ; ) to choose i particles (with energy €, and length

a) out of N particles we find for the partition function
7 — Z o Bl (€i—Fly)
Y (N
= < ; > exp (—flieq + (N —i)eg] + BF[ia + (N —)b])
i=0
(N
— ¢ BN(ep—Fb) Z < ; > lexp (—f5(ea —€g) + BF (a —b))]
=0
— ¢~ BN(es—Fb) (1 + e*ﬂ(ememwF(afb))N

_ (6*56B+5Fb n e—ﬁeﬁﬁm) N
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The mean length of the chain molecule is then

N
(&)
=1 .
_ %ZZ Lo~ BTN (6~ Fl)
s =1

_118 Z e~ BN (6~ Fli)
- ZBOF

10log Z

,8 COF

N Bbe~ Pesg+BFb | 5ae—6sa+BFa
-5 —Beg+BFb —Bea+pFa

B e +e
be—PestBEb 4 e—PeatBFa

e*ﬁ65+ﬁFb + e—ﬁe(,-i-ﬂFa :

2.18 Solid-Gas equilibrium
a)

The hamiltonian of the particles in solid phase is that of Ns independent
harmonic oscillators

Ns p2 N mw
=1 =1

Now the partition function of this system is

1 p2 mw2r2 NS
2T, V.Ns) = 3w </e_52mclp/e_52 dr>
1 g2\ 3Ne/2
ATEE (5%2)

1 2 P
N\ Bwh ’

The hamiltonian of the particles in gas phase are

NQ
Hyl( Z&+N<I>.
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Now the partition function of this system is

1 p2 & Ng
Zg(T7‘/,Ng) = W </ eﬁ%ndp/dreﬁ )

VNae=NaB /oy 3No/2
NGRS < B >

b)
The total free energy is then given by

1
F(T7‘/,N, Ng) = 7B(IOgZS(Ta VvNiNg) +10ng(T7VYaNg))

1 27
=3 (—(N — Ng)log(N — Ny) + (N — Ng) + 3(N — Ny) log B
3N, 2m
—NyB® + Nylog V — Ny log Ny + Ny + = log ﬂh;>
(N — Ng)log(N — Ngy) + Nylog Ny + N + 3(N — Ny) o Bwh
N I5} & 27
N, 3N, Bh?
N,®— =21 =71 :
+ Ny 5 ogV + % 085 —
There is only equilibrium when éaTFg = 0 so there is equilibrium when
oF
0=—
ON,
Bwh 3 Bh?
= — — — — —1 —1
log(N — Ng) + log N, — 3log o + 5P —logV + 51085 —

holds. This is equivalent to
N o1 \° / gh2 \*/?
1) === et
(%)= () (o)
1

= —eﬁ(1> 727( 3/2 .
174 mfuw?
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That gives us

oF

P=-_
v

_ NykpT

v

2.19 Ideal gas in grand canonical ensemble
a)
Remember that the partition function of the ideal gas is

VN

Z(N,V,T) = ——=x
NIX3N

So we know that
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b)
The distribution of the total number of particles is

PN Z(N,V,T)

P(N) =

E(p,V,T)
B N
= exp <—Ve3 )eﬁ“N ‘|/3N
A, NI
_ (NN

with (N) = Ve
T

c)

Now we see

_ (NN

= EN NZ%exp (- (N)) N
_ ouN 1

= N) %ﬁ

o2 (o)
N

N

Now the expression Y Ne™ (V) % = > n NP(N) is the mean number of
particles (V) so we have
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2.20 Coexisting phases
a)

N . . . . .
There are ( ; ) ways to choose i particles (in the solution) out of N particles.

So the partition function is

1 N

g _ Z N\ iy N—iis

_)\%NN!,O<i> IZ2 e’
1=

= W (Vleﬁo‘ + VQ)N ;

h
where )\T = W

b)
The average number of particles in solution is given by

1 X /N
— v iy, N—i ifa
<N1>_ZA%NN! ;:0(1.)21/11/2 e
N

Vi 9 N\ (it N—i iBa
= Z)\%NN!W; <Z> VivN-ieih
dlog Z
oy
Dlog(V1eP + V3)
oy
_ ViePe
=Ny

=W

=NV

The average number of particles in gas phase is then

(N2) = N — (N1)

Va
=N—->bi—"——.
Vleﬁa—i—VQ

)

The grand canonical partition functions are given by
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V'lNeNBozeB,ulN
El(vlaTu Ml) = T \3N a1
2 NN NI

N
5 L[, o) N
= e 11— =
N B
Vyeflatu)
=exp | ——
A7
and
_ ‘/266/1/2
‘:2(‘/27T7 M?) = eXp < )\3 > .
T
Now the average number of particles in solution are given by
1 VN eNBaghu N
(M) =z Vi. T Z ' 3N N
‘—‘1( 1, 7“1) N T .

o 1 1 8 Z VlNeNBO‘eﬁ’“N
El(‘/b T, //Jl) p alu’l N )\%NN'
alogEl(‘/lvTa ,ul)

_1
B O
VyePlatu)

Nt

In the same way we find
_ 101og=5(Vo, T, pi2)

(Na) B Oz
V265H»2
= i
Now imposing that these are equal to those computed in b) we have
VyePo VyePlatu)
Viel 1V, AR
Vo B VyeBr2

N -
Viebe 4V, )\%

Dividing the left side of one equation by the left side of the other we find
1 = eﬁ(ul—uz)’

so we must have p; = po.
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2.21 Arrhenius law
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3 Interacting Systems

3.1 Hard Rods

The momentum part of the integral can easily be calculated so we see

1

hv/B

V2rm’®
We order the particles from left to right, such that x; is outermost left, xo

right from x7 and so forth with xn outermost right. This ordering isn’t
arbitrary, the positions of the particles may as well be interchanged. So we
introduce a factor N! to correct this

1 [L=o/2 L—c/2 L—=a/2
Iy = — / dxy / dzo . . / de Ai—l,i
)\j]Y /2 /2 o 1;[

where A\p =

where we have introduced A;_;; which is zero when |z; — 2;—1| < o and
equal to one when |z; — x;—1| > 0. Now the first particle has to leave room
for N — 1 other particles, this means that its upper bound is L — No 4 o/2.
The k-th particle has to leave room for N — k other particles so its upper
bound is L — (N — k + 1)o 4+ 0/2. The k-th particle has to have a distance
larger than ¢ from the (k-1)-th particle so its lower bound is zj_; + 0. We
see

1 L—No+0o/2 L—(N—k—1/2)0+0/2 L—0o/2
ZN:)\N/ dl‘l/ dx'k+1.../ dl’N
T Jo/2 zp+o TN_1+0

Using the change of variable yx1 = xr11 — o(k + 1/2) we see

1 L—No L—No L—No
Zn dyr / dya. .. / dyn

T
T J0O Y1 YN -1
1 L=No ([, - Ng — z)N-1
_WA (N=1)!
_ (L—No)¥
NN
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First we calculate the internal energy as follows

B dlog Zn
op
_ N(?log Ar
op
_N
=35
_ NkgT
2
so we have for the specific heat ¢y, = %
b)
The pressure is now given by
__or
P="%L
1 9(Nlog L1582 — Nlog N + N)
B oL
B 1
~ B(L—No)
kT
L—No

3.2 Hard Disks
a)

The first disk that is placed in the area has the total area of S available, if
we neglect the area that is lost at the boundary. The second disk has again
an area of S available minus the area of a circle of radius 0. So the effective

area available is Ay = S% — mo28S.

b)

Using the same approximation as before, we try to find the approximate area
Ap available for N particles. Let us put the particles in S in a particular
order. Then for the first particle there’s an area of S available, the second
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has S — mo?, the third S — 270? and so forth. Multiplying this we get
an = Hfi o(S —ima?). Notice we have the following recursion relation

ay = San_1 — Nwolay_1

To which the solution is
N S
r (1 _ i)

o2

Now because we placed the particles in a particular order, we have to intro-
duce a factor of N! to account for all the orders the particles might come
in. So A, = Nla,. The momentum part of the partition function is easily

2mm

N
integrated, it is simply (W) . So the total partition function is

1 2mm N
agn (i) &
(—7a)NT (N +1 - 55) < Bh? >N

I'(1--2) 2mm

To?

The approximation is good for small o. Then the area lost at the boundary
will be negligible.

c)
Now if we take Ay to be the exact available area. Now because A,, doesn’t
depend on S we see

dlog Zn
5
dlog 8
op

E:

I
=

=

1
Z o

kT

so the specific heat is ¢y = Nkp. This result is exact, since we didn’t
approximate Ay here.
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3.3 Virial expansion for Hard Spheres

a)
We know

[0 al =00

so f(q) = g(q) — 1.
The second virial coefficient we calculate as follows

1

bo(T) = 3 /de(OI)

).
2 J/5(0,00)

- 27708

==
where we used S(0,09) to denote a sphere with radius oy and center 0.
b)

The third virial coefficient we calculate as follows

1

b3(T) = —3/dQ1/dQ2f(Q1)f(Q2)f(Q12)
1

= 3/ dch/ dqz f(q12).
S(O,a’o) S(O,a’o)

First fix some qi, and we calculate the following integral

—/ daa f(qu2) :/ dqa.
5(0,00) 5(0,00)NS(q1,00)

Notice that this is precisely the volume in the intersection between a sphere
with center 0 and radius g and a sphere with center q; and radius og. This
volume is also equal to the volume of a spherical cap of the first sphere plus
the volume of a spherical cap of the second sphere. So first we will figure

out the volume of a spherical cap.
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Figure 1: The parts in blue and red are both spherical caps.

A spherical cap is a portion of the sphere cut off by a plane. The volume of
the spherical cap is given by °

wh2(3r — h)
— s

For the first sphere take h as described in figure 1 to be h; and for the
second ho. By symmetry hy must be equal to he and h = g9 — %. Now
the volume of the two spherical caps is given by

‘/cap =

T
Veap = 3 (h%(?ﬂo — h1) + h3 (300 — h2))

27 (200 — |q1])? lai|
= 2 il
12 (200 +=57)

(209 — 2
:—( 012|q1|) (400+|q1|).

Finally we can calculate the third virial coeflicient as follows

1 200 — 2
by(T) = & / dq TE00 1D
3 5(0,00) 12

5You can see this by taken the volume of the spherical wedge described by 6 and
subtracting the volume of the cone with the circle with radius a as base.
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Switching to spherical coordinates we find

4 2 led)
T / 7"2(200 — r)2(400 + r)dr
0

_ 505
9 2
3\ 2
_§ 2moy
-8 3
5

= ng(T)Q

3.4 Second virial coefficient and the Boyle temperature

a)
We see that

-1 O<r<o
e P 1 B 1 g<r<20
0 r> 20

The second virial coefficient is equal to

b T) = —92 /+OO d 2 ( *ﬁ@ﬁ(T‘) _ 1)
2(T) T rr (e
0

o 20
= —2r (/ (—r?)dr + <eﬁ€ - 1) / r2dr>
0 o
20 20
=27 </ r2dr — 656/ r2dr>
0 o

2
=37 (803 — e’¢(80° — 03))
2no®  1dwo?
- 1- ).
3 T3 ( °

Here the first term is due to the hard sphere potential and the second term
due to the attractive part of the potential.

b)
Denote with T the Boyle temperature. So we have
0 = ba(Typ)
_ 16703 _ 147T036k1;Tb,
3 3
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This gives us

€
eFBTy = —

So the Boyle temperature is T = W(Sﬁ)' Considering that by(7T) is an
increasing function we have that bo(T') is positive for T' > T}, and negative
for by(T') for T' < Ty,

3.5 Virial coefficient

The second virial coefficient is given by

bo(T) = —2 /+ood 2( fﬁqﬁ(r)_l)
2(T) T rre (e
0

2 3 +oo Be
_ 9 —27r/ dr (er6 —1) r2.
3 o

Expanding the exponential we find

9 00 400 n
bo(T) = 77730 — 27 / drr? <ﬁ§>
n=1v9 "
2103 oo
~~ 5 27756/0 T—4dr
2103 2
5 3,3 mfle.
So we have
an
P=nkgT (1+4+bn—
nkp < + on kBT>
where b = % and a = 320—”36 which looks like the low desnity expansion of

the van der Waals equation.

3.6 Second virial coefficient of Argon

a)

We calculate the second virial coefficient for the potential ¢(r).

o1



bo(T) = —27r/ dr (e_ﬂ‘b(r) - 1) 7
0

= 27 —/ dr?“2+/
0 o

oo (o — o3
o (o J)<e'8€—1).

Expanding ¢ — 1 we find

2ra®  2n(0" — o?)

(% 1) d>

T2

bo(T) ~ 5 3 (Be + p*e?)
_ 270 B 2me(0” — 03) 1 2me?(0” — o) 1
3 3kp T 3k,
So we find
A 273
3

B 2me(0”3 — 03)
3kp

O 27re2(0'32— o3)
3K2,

Inverting these relations we find

3A 1/3
(2

3 ) 1/3

! -

o = <27T(A+B /0))
C

€:]€B§

b)
3.8.12 is simply a quadratic equation in 1/7" so we find

1 B+VB2t4AC

T, 24
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We only consider the positive solutions, because we can’t have any negative
temperatures (in Kelvin that is). So for the Boyle temperatur we find

24
B+ VB2 +4AC

Ty, =

3.7 The Flory exponent of a polymer

Differentiating the expression 3.8.14 with respect to V gives —kpTn —
kpTbon? which corresponds precisely to the virial expansion.
Now we can find the minimum of F' given by 3.8.15 as follows

_OF

=R
3R by N2
= kel <Z\72 B de+1> -

This equation is satisfied for

0

Rd+2 _ db2a2 N3
3 )

3
and so R ~ Nd+z,

3.8 The mean field theory of non-ideal gases
a)

Calculating the partition function for the system described by Hy we see

Zy = eiﬁN/\Z[

VN
NIV

where Z7 is the partition function of the ideal gas which is Z; = So

the free energy of this system is

log Zy
B
=N\+

Fo(A) =

—NlogV + N — Nlog N + 3N log Ar
5 .
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We also see that

1 -
(H1(N)o = Fmavz /dI‘e PEIFINN LN " ®(|r; — 15]) — NA
' i<j

N(N —1)VN=L o

- LN /dr(I)(|r\)—N/\

N(N -1
:(V)a—N)\

N?
%—VCL—N)\

where a = —3 [ dr®(|r|).

Now we see that

—NlogV + N — Nlog N + 3N log Ar
B )

F(A\) = fracN*Va +

which is already minimal so

~ N? —NlogV + N — Nlog N 4 3N log At
Va—i— 3 .

b)

From this we find the following equation of state

OF
P=—-="
v
0 <N72a + NkpT log V)
- Pl%
_ NkgT  aN?
SV V2

This method cannot work if the pair potential is slowly decaying because
then the integral [ dr®(|r|) diverges. It also can not contain a hard repulsive
core, because then ®(r) diverges at zero, making the integral diverge too.
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3.9 The critical exponents of a van der Waals fluid
3.10 One dimensional Ising model
a)

The partition function is given by

7= .. % BRI sitBI L sisinn
s1==%£1 sy==%1

= Z Z ﬁeﬁh5i+5j5i5i+1

s1==£1 sy==x11i=1

N
=) D> s

s1==+1 SN=:|:1 =1

BI—Bh  o—BI—Bh
= <6—5J+,8h (BI+5h > :

with

Now notice that

Z: Z Z T51,32T52,53~'-T8N,81

s1==*1 sy==%1

= Z (TN)S1,81

s1==+1
= Tr(TM).

Now the trace of a matrix is equal to the sum of its eigenvalues. If A1 are
the eigenvalues of 7' then \Y are the eigenvalues of TV so we have

Z =2+
The eigenvalues A4 satisfy the characteristic equation
(9744 ) (5% 2) — =2 0,
This is equivalent to
A2 — 2¢P7 cosh(Bh)A + 2sinh(B.J) = 0,

which has the following solution
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A+ = 7 cosh(Bh) £ \/leBJ cosh?(h) — 2sinh(BJ)

28J
= ¢ cosh(Bh) + \/64 (1 + e20h 4 e=26h) — B  e=B7,

3.11 The Infinite-range Ising-model
a)

Calculating the partition function using 3.8.28 we find

7=cP2Y exp (fN (Z )2)

{si} C
e~ Pe/? 1, Be
o ;/dyexp (—23/ —i—\/N;siy .

Switching the sum and the integral and using the fact that

> exp (ﬁ; 3i> — Zne\/ﬁ%&-

{si} {si} 1

we see that
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b)

Now the free energy is given by

F= % — NkpTlog <2cosh< ?\;)) .

3.12 The mean field solution of the Ising model

o7



4 Quantum Statistical Mechanics

4.1 Quantum Harmonic Oscillators

a)

The classical partition function, as calculated in 2.3, is given by

o \V
Z(N’V’T):<wﬁh3> .

Now the internal energy is given by

B _ dlog Z
op
= NkgT,
and the specific heat
Cy = Nk‘B.

b)

The energy of a quantum harmonic oscillator is given by €, = hw (n + %)
So the quantum partition function can be calculated as follows

Now the internal energy is given by

_ OlogZ
FE = a5
 Nhw Bhuw
= 9 COth <2> s

o8



and the specific heat by

oFE
v =ar
h2w? 1

T o ()

Now expanding for example the expression for E we find
ﬂ2ﬁ2 2
1+ Tw —+ ...

Bhw | B3Bw?
T + 86 + “ e

1 52}7,20.)2
= NkpT .
1

21202

E = Nhw

Now for temperatures such that % <<lorT >> k@, the energy reduces
B B

to F = NkpgT which is the classical energy for the harmonic oscillator.

4.2 Low temperature limit of a quantum partition function

The internal energy is given by
Olog Z
op
B e P (B + Ege_BAE)
e BEL (1 + ¢~ BAE)
_ Ei1+ (Ey + AE)e PAP

E=—

1+ e PAE
The specific heat is then given by
OF
v =on
1 OF
T kpT? 98
1 —AE(E1+ AE)e PAE (14 e PAE) 4 (Ey 4 (Ey + AE)e PAE) AEe PAE
k7 (1+ e PAE)
1 AE2ePAF AR? BAEN
" kpT? (14 e PAE)? " kpT? cosh <2> ’
At low temperatures 1 + e P2F ~ 1 s0 ¢y = ]f;; 67% ~ ef’éTET.
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4.3 Ideal gas with internal degrees of freedom
i)
The kinetic energy of a particle enclosed in a volume V = L? is given by

2

Ein:
kin = 573

n+n +n?),

where n,,n, and n. are integers. The quantum partition function is then
given by

W
=1

{(n’b Evnl y7nz z

2 3N
2
<n—oo o 2mL2 ! > )
h2 3N
< exp < ﬂx2> dx)
2m

[ V2mm
NGD)

where we have approximated the sum by an integral. Now the energy is
equal to

dlog Z

op

3N
—kBT

E=-—

and the heat capacity cy = %k‘g.
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ii)
The partition function for molecules with vibrational degrees of freedom is
given by

Z=3 e Tl (nit1/2)
{ni}

o N
_ <e—ﬁhw/2 Z e—ﬂhwn)
n=0
N
_ e—ﬁfzw/Q 1
1 — e Fhw

()

The energy is now given by

E= @coth <Bhw) ,
2 2

and the specific heat

OF
o= ar
B h2w? 1
kT sinh? (21?;T>

As calculated in 4.1. Now the heat capacity at low temperatures goes to
zero and for high temperatures reduces to

lim Cy = N]{ZB.
B—0

4.4 When are quantum effects important?

4.5 Bose-Einstein, Fermi-Dirac and Maxwell-Boltzmann statis-
tics

If the particles obey Bose-Einstein statistics or Maxwell-Boltzmann® statis-
tics, all nine configurations are permitted, that is particle 1 can take on any

5This isn’t mentioned in the course notes but section 7.5 in the book by Sethna deals
with this.
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value of 0,€ or 2¢ and so can particle 2. If the particles obey Fermi-Dirac
statistics, only six configurations are permitted, that is where the energy
level of particle 1 and particle 2 differ.

The partition functions are

2
ZBE = <1 —|—6_B€ —|—6_266>

(1+ e Be 4 ¢=26¢)°
2!

2
Zpp = (1 +e P4 67256) — 1 — e 2P _ 4B = 9e= B | 9720 | 9p—3P¢

ZMB =

The internal energies are then given by

1+ 2e P
14 eFe 4-e=25¢
1+ 2¢Pe
14 e=Pe 4 =26

EMB = EBE = 26€_ﬁ€

Epp =€+ ee B¢

For T — 0, 8 — oo and so Eyg = Egg — 0 but Epp — €. For T — o0,
8 — 0and so By = Egg — 2¢ and Epp — 2e.

4.6 Quantum Corrections in a Bose ideal gas

We write

where x = nA3.. According to 4.2.12 and 4.2.13 we have
00 0 o

+1 _

doma" =3 o,

n=0 =1

0 l

= Zlif/z

=1

Filling in the second equation into the first, and working out for the first
few orders of z we find

1 1
zao+22(ao+a1)+z3< —l—a2> z+z + 23— 4 ...
2v2 "33 B 4xf 9V3
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Since equal power series must have equal coefficients, we have

apg = 1,
1 1
GOﬁ +ay = m,
1 1 1
aoﬁ —|—a1\ﬁ +ag = 97\/5
Now these equations have the solutions ag = 1, a1 = —ﬁ and as = %—%%.

7

4.7 Bose-Einstein condensation in two dimensions?

The quantum partition function is given by

logZ2 = — Zlog (1 — eﬁ“_BPQ/@m)) .
P
Now using 4.2.9 and z = e®* we have

log= = 375 2/ am
=1

p I=

A gy 2
~ < —Bp*l/(2m)
hQ/dp; le

where the sum over p is replace by an integral. Now we also find

N = Z<np>
P

z yA
=TSt 2 e
20

z
p

"In the notes there’s a different answer, but I fed this into maple, and it gave the same
answer as my solution. If you find another solution that corresponds to the one in the
notes or an error in this solution, please let me know.
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Now integrating gives

)\2 z Ooz
N = ol
_VT z
Al -—2

—log(1 — 2).

4.8 Bose condensation in a band

UNDER CONSTRUCTION (any solutions you have for the following exer-
cises, I'll happily receive)

4.9 Bose-Einstein condensation in a harmonic potential

The energy levels are given by €(ng,n,) = hw(ng, + ny, + 1). For any given
energy ¢, the area described by n, +ny, < ;= — 1 is a triangle in the ng,n,
plane with area N(e) = 1 (5 — 1)2.

Now the density of states is given by g(e) = dzgée) = h2w2 Given a chemical
potential y, the amount of particles in the system is equal to

_ [ (e

The maximal value is

1 * (x — hw)
Nmax = h2w? /0 efr — 1 dr

1 1a?

C R2w?pB2 6
So the amount of particles in this approximation is bounded, if there are
more particles in the system than this maximum value the system becomes
a Bose-Einstein condensate.
In one dimension the energy is given by €(n) = hw (n + %), so the density
of states is given by gi1p(e) = % Now the amount of particles,

i) m/ Pl —1

isn’t bounded, so Bose-Einstein condensation does not occur.
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4.10 Photons and phonons are bosons

A quantum harmonic oscillator with frequency w has the energy € = hw (n + %),
shifting the zero of this energy, gives € = lwn. The canonical partition func-
tion for a quantum harmonic oscillator of frequency w is then

o
7 = Z B—Bhwn
n=0

B 1

1 — e Bhw
The grand canonical partition function for bosons filling a single state with
energy hw is

_ 1
B 1— eﬂ(ﬁ‘_h’w) )

(1]

(1)

Now we see that Z(0) = Z.

4.11 Black body radiation
a)

We know that k = 7 (n.,ny,n.) where n,,n, and n. are positive integers.

Now the amount of photons in a volume element dk is Q%dk. Now the
number of oscillators in [w,w + dw] is
1 L3

2= Ank*dk =
™

3 Luﬂdw = g(w)dw.

m2c3
b)
The grand canonical partition function is now given by
o0
logE = / dwg(w) log (1 - eﬁ(“*h‘”))
0

= v dww? log (1 — eﬁ(“_ﬁ“’)) .
7'('203 0

c)

The pressure of the gas is given by
PV =kpgTlog=

T o0
— kBV/ dww? log (1 _ e—ﬂfuu)) ‘
w23 Jy
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Using integration by parts, we find

1 [ 1
py=Y1 / dwhu— 1
7T203 3 0

)
=3

d)

The average energy of the system is now given by
o0
hw
E= /O dwg(w) e 7

Vo1 °°d 3
T nE s ), e —1

_ VEkpT!
~ 15R3e3 7
e)
Notice that
o© hw
FE = d —_—
) wg(w) oBhw _ |
= / dwu(T,w),
0
such that
gw) hw
u(T,w) YV oBh 1
7?1,03
23 (efhw — 1)
f)

66



4.12 Phonons on a String

4.13 Debye Model

4.14 Ideal Fermi gas in two dimensions
4.15 Landau Theory of diamagnetism
4.16 Pauli spin paramagnetism

a)

The magnetization is equal to

1 p2 —Bép. 5.
M= Z B \pusi — 5 e

{pi,s:}
o (5)
-—5

4.17 Particles in magnetic field

The canonical partition function is given by

7 — Z e PuH SN s
{si}
N
— <Z e—BuHS>
s==+1
= (2cosh(BuH))N .

Now the internal energy is given by

~Olog Z
op
= —NpH tanh(SuH).

E =

And the entropy is given by
_E-F

T
= N(kplog(2cosh(BuH)) — % tanh(SuH))

S
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The specific heat is given by

N Otanh(BuH)
~ kpT? op

_ NuH

~ kpT?cosh(BuH)?’

cv

The total magnetization is given by

Finally the magnetic susceptibility is

oM
T OH
_ N 0 sinh(SuH)
- oH (uH Cosh(ﬁuH))
o2 ( sinh(y)
=Ny, (7 cosh(v)
25inh(y) —
cosh(v)?

X

) with v = SuH

= Nup

4.18 High temperature specific heat of metals: a paradox?
4.19 Electronic contribution of specific heat

4.20 White dwarfs
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