## Stat. Inf. Open book part

January 19, 2017

## Q1.

Consider the following regression model:

$$Y_i = f(x_i) + \epsilon_i, \text{ for } i = 1, \dots, n$$
 (M)

where  $n \in \mathbb{N}$ ,  $x_1, \ldots, x_n$  are known constants and  $\epsilon_1, \ldots, \epsilon_n$  are i.i.d. with  $E(\epsilon_1) = 0$  and  $Var(\epsilon_1) = \sigma^2$  for  $\sigma^2 > 0$  unknown. Moreover, we assume that  $\min_{1 \le i \le n} x_i \le \frac{1}{2}$  and  $\max_{1 \le i \le n} x_i > \frac{1}{2}$ . We know that the unknown function  $f : \mathbb{R} \to \mathbb{R}$  is linear on the intervals  $(-\infty, \frac{1}{2}]$  and  $(\frac{1}{2}, +\infty]$ . At  $x = \frac{1}{2}$ , the function may be discontinuous. Furthermore, we know that f(0) = 0, and f(1) = 1. We want to estimate the function f.

(a).

Describe the problem (M) as a linear regression model using matrix notations, and define every notation you use.

Hint: Verify that there exist  $(\beta_1, \beta_2)$  such that

$$f(x) = \begin{cases} \beta_1 x & \text{for } x \le \frac{1}{2}, \\ \beta_2 + (1 - \beta_2) x & \text{for } x > \frac{1}{2}. \end{cases}$$

(b).

Find the LSE  $\hat{\beta}_1$  and  $\hat{\beta}_2$  for  $\beta_1$  and  $\beta_2$  from part (a).

(c).

Based on part (b), give  $Var(\hat{\beta}_1)$  and  $Var(\hat{\beta}_2)$ .

Consider a sub-model (M0), where the function f is as above, yet continuous. That is, f is linear on  $\left(-\infty, \frac{1}{2}\right]$  and  $\left(\frac{1}{2}, +\infty\right]$ , f(0) = 0, f(1) = 1, and continuous on  $\mathbb{R}$ .

(d).

Parametrize the function f, denoting its parameters by  $\gamma$ , and formulate the model using matrix notation. Define every notation you use.

(e).

Find the LSE of  $\hat{\gamma}$  of  $\gamma$  and compute its variance  $Var(\hat{\gamma})$ .

(f).

Compare  $\hat{\gamma}$  form part (e) with  $(\hat{\beta}_1, \hat{\beta}_2)$  form part (b). Comment on the results.

(g).

Construct a test for the problem  $H_0: (M0)$  against  $H_1: (M)$  of size 0.05.

(h).

Briefly discuss if additional assumptions are needed for the test from part (g).

## Q2.

Let  $X_1, \ldots, X_n$  be a random sample from X having probability density function

$$f_X(x;\theta) = \frac{1}{2}(1-\theta^2)\exp(\theta x - |x|), \text{ for } x \in \mathbb{R}$$

with  $\theta \in \Theta = (-1,1)$  is unknown and where  $E(X) = \frac{2\theta}{1-\theta^2}$ .

(a).

Prove that the MLE  $\hat{\theta}$  of  $\theta$  is

$$\hat{\theta} = \frac{-1 + \sqrt{1 + \bar{X}^2}}{\bar{X}},$$

where  $\bar{X}$  denotes the population mean. In particular, verify that  $\hat{\theta}$  is in  $\Theta$ .

Hint: the functions

$$h_1: t \mapsto \frac{-1 - \sqrt{1 + t^2}}{t}, h_2: t \mapsto \frac{-1 + \sqrt{1 + t^2}}{t}$$

are strictly increasing on their domains.

(b).

State an asymptotic normality result for  $\hat{\theta}$ .

(c).

Find the estimator of  $\theta$  using the method of moments, and compare it with the MLE from (a).

(d).

Based on the MLE, construct an (approximate)  $100(1-\alpha)\%$  confidence interval for  $\theta$ .

(e).

Use (b) to construct an (approximate)  $100(1-\alpha)\%$  confidence interval for E(X).

(f).

Construct the UMP test of size  $\alpha$  for the testing problem  $H_0: \theta \leq 0$  versus  $H_1: \theta > 0$ . Approximate the distribution of the test statistic using the result from part (e).