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1 First and second quantized operators

We started the course with direct product states, i.e.

1:a,2:08,...),

which are orthonormalized, such that for example

(1:a,2:6,3:7,...|1:p,2:0,3:p,...) = 0000 - - - -

Slater determinants are defined as
lag -+ - ) :mAll:al,...,N:am ,
with A the anti-symmetrizer operator.
A k-body operator K, in first quantization, is defined via its action
1:0,2:0,..)—=K|l:a,2:0,...),

and we write

1 N
K=5 > kg0,
1EjFE

where k(7, j, ..., 1) acts non trivially as

li:o,j:B,... 0:0) = k(i,j,....0) i :a,7:06,...,01:9)

In second quantization, the canonical commutation relations are
+1
{a,, a7} = 0.
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Operators are decomposed as (watch out: reversed order for annihilator indices)

1
K = k! Z 5ka---ﬁ7---6a;r v -CLE% Ty ®)
o By

where the matrix elements are

Kooy = (i oo L BlEG . D]i oy, 1:0) . (9)

For example, 1-body operators in first quantization are written as
N
F=2% [0, (10)
i=1
and in second quantization are written as

F= Z fa/gaj;ag . (11)
of

To go from 1°* to 2°¢ quantization in this case, use that

fap = (L:ialf()[L:5) . (12)

A useful result from Practice 1 is

[Fa a;ri] = Zfaai@; . (13)

The local density operator is

S~
.
&

where e.g. pr(1) is defined in the basis |1 : For
(1:mo1mi|pry|l - FroyT) = 6(F — 71)0(r — 77'1)5010/157171 ) (15)
The number operator is defined in 2" quantization as

N = Zazaa (16)

and has the Slater determinants as eigenstates.

The kinetic energy operator of one particle has matrix elements (in an arbitrary basis)

2

h B} 3}
tag = (1:aft(1)|1:B) = %/df’z Vi (roT) - Vs(ror) . (17)
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The nuclear Hamiltonian in second quantized form is (omitting 3-body interactions)

1\ 2
H=T+4+V = Z taﬁa ag + <2') Z @amga;‘aga(gaw + ...,
afBvyd

with antisymmetrized matrix elements:

Eaﬂ'yé = VaBys — VaBsy »

which, in the above summation, has the symmetries

Eaﬁ'yé = _Eaﬁéy = _vﬁa'yzi = +65a§7 .

2 Operator relations and basis transformations

Position representation of 7, p’ operators

?:FX,
p=—ihV,
AP = 8(F — )7

Completeness relation on H;:

1= o) (a

For a trivial Bogoliubov transformation,

By ={lm} ai = By ={IN},0],

we have the relations

=D QA =D 0N M=ZMM un
A A
=Y Ot ST
A
The unitarity of the transformation can be expressed as

Z O;\MCAM' = 5##’ )
A

Y

(19)

(20)

(29)



from which the inverse transformation rules can be found, such as for example

by => Cia. (30)
I

For quasi-particles, a vacuum associated to a complete set of quasi-particle creation and
annihilation operators {5, 8.} satisfies §, |®) = 0. General Bogoliubov transformations

from {fBa, 55} to {Bx, By} read
By = Z \Ba (31)

B)\ = Z Va,@ﬁa + Uaz\ﬁa ) (32)
and the inverse
Boa =Y UarBr+ Vi3 (33)
A
=3 VB + ULBE (34)
A

This can be put in matrix form (see notes page 32). Note that Bogoliubov transformations
change the vacuum and associated Hilbert spaces Hy. A trivial transformation (i.e., V = 0)
does not change the associated vacua.

3 Wick theorem

Normal product: bring all annihilation operators to the right of all creation operators, and
multiply by the signature of the permutation. Note: this depends on the set of operators
and hence on the vacuum |®). By definition, we have

(®|: ABC...Z :|®) = 0. (35)

Contraction: the difference between an operator and its normal product, i.e.

(|
AB = AB—: AB: . (36)
We have - (B[ AB|®)
AB=-~—_""* (37)
ey

Wick theorem: page 56 of the notes.
Generalized Wick theorem: page 63 of the notes.
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4 Slater determinants and particle/hole excitations

Working in the basis By = {ba, b}, a Slater determinant of Hy is defined likd']

@) = e 10} (38)

The conventions used are such that

a,b,c,... unoccupied/particle states
i,7,k,... occupied/hole states

Taking the Slater determinant as Fermi vacuum and these conventions, we have

annihilators: b} b,
creators: b, bf

Particle/hole excitations: (watch out for the reversed order in the second part)
D) = bbb ) (39)

In an arbitrary basis {ay, a} }, the elementary contractions ar

ayay =0 (40)
—

atag = ppa (41)
—

aaag = 00 — Pas (42)
tpas = 0 (43)

In basis By, this is simplified as p becomes block-diagonal, i.e.:

Ppa = 0i0ai - (44)
Therefore, we have:
—
CLICL[; = 5ai5a6 (45)
U = Ouabas (46)

'We are following the conventions of the lecture notes. Note that one should swap a <+ b when reading
Practice 3.
2Watch out for the reversed order of indices in the definition of p.



5 Mean-field and Hartree-Fock

Using Wick theorem, the Hamiltonian in an arbitrary basis {ay,a} } reads

H = Ztagpag—F Zva575p70p55+2h&ﬁ a’ aag - t+= Zvag,yg al a5a5a7 (47)

06575 aff 04,375
where (see also equations and ((19))
hap =tap+ Y DanpsPsy - (48)
07

The HF partitioning is H = Hy + Hy, with

Hy = HY + H (49)
= Z tas + 5 O VapysPraPsos + Z €a t byba (50)
afBvyd
iy 4 (51)
= Z FLOCB . b;_bﬁ : ‘*’i Z 506576 : bzbgb(sb’y 5 (52)
af apys

where H™ denotes the n-body part of the operator. Here, we defined
;Laﬁ = haﬁ — eaéaﬁ . (53)

The Fermi vacuum from equation and particle/hole excitations from are orthonor-
malized eigenstates of Hy in Hy, with eigenvalues

e+(eatent+-)—(eitej+-), e=H". (54)

Koopman’s theorem: Within HF, we have

(PUH|D) — (P|H|P) = eq, (55)
(Bi|H|®;) — (P[H|P) = —e;. (56)

Brillouin’s theorem: Within HF, H; does not couple |®) to 1-particle/1-hole excitations:

(PF[H:|®) = 0. (57)
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