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1 First and second quantized operators

We started the course with direct product states, i.e.

|1 : α, 2 : β, . . .⟩ , (1)

which are orthonormalized, such that for example

⟨1 : α, 2 : β, 3 : γ, . . .|1 : µ, 2 : ν, 3 : ρ, . . .⟩ = δαµδβνδγρ . . . . (2)

Slater determinants are defined as

|α1 · · ·αN⟩ =
√
N !A |1 : α1, . . . , N : αN⟩ , (3)

with A the anti-symmetrizer operator.

A k-body operator K, in first quantization, is defined via its action

|1 : α, 2 : β, . . .⟩ 7→ K |1 : α, 2 : β, . . .⟩ , (4)

and we write

K =
1

k!

N∑
i ̸=j ̸=... ̸=l

k(i, j, . . . , l) , (5)

where k(i, j, . . . , l) acts non trivially as

|i : α, j : β, . . . , l : δ⟩ 7→ k(i, j, . . . , l) |i : α, j : β, . . . , l : δ⟩ (6)

In second quantization, the canonical commutation relations are

{aµ, a+ν } = δµν . (7)
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Operators are decomposed as (watch out: reversed order for annihilator indices)

K =
1

k!

∑
α···βγ···δ

kα···βγ···δa
+
α · · · a+β aδ · · · aγ , (8)

where the matrix elements are

kα···βγ···δ = ⟨i : α, . . . , l : β|k(i, . . . , l)|i : γ, . . . , l : δ⟩ . (9)

For example, 1-body operators in first quantization are written as

F =
N∑
i=1

f(i) , (10)

and in second quantization are written as

F =
∑
αβ

fαβa
+
αaβ . (11)

To go from 1st to 2nd quantization in this case, use that

fαβ = ⟨1 : α|f(1)|1 : β⟩ . (12)

A useful result from Practice 1 is

[F, a+αi
] =

∑
α

fααi
a+α . (13)

The local density operator is

ρ(r⃗) =
N∑
i=1

ρr⃗(i) , (14)

where e.g. ρr⃗(1) is defined in the basis |1 : r⃗στ⟩ via

⟨1 : r⃗1σ1τ1|ρr⃗(1)|1 : r⃗′1σ
′
1τ

′
1⟩ = δ(r⃗ − r⃗1)δ(r⃗1 − r⃗′1)δσ1σ′

1
δτ1τ ′1 . (15)

The number operator is defined in 2nd quantization as

N =
∑
α

a+αaα (16)

and has the Slater determinants as eigenstates.

The kinetic energy operator of one particle has matrix elements (in an arbitrary basis)

tαβ = ⟨1 : α|t(1)|1 : β⟩ = ℏ2

2m

∫
dr⃗

∑
στ

∇⃗φ∗
α(r⃗στ) · ∇⃗φβ(r⃗στ) . (17)
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The nuclear Hamiltonian in second quantized form is (omitting 3-body interactions)

H = T + V =
∑
αβ

tαβa
+
αaβ +

(
1

2!

)2 ∑
αβγδ

vαβγδa
+
αa

+
β aδaγ + . . . , (18)

with antisymmetrized matrix elements:

vαβγδ ≡ vαβγδ − vαβδγ , (19)

which, in the above summation, has the symmetries

vαβγδ = −vαβδγ = −vβαγδ = +vβαδγ . (20)

2 Operator relations and basis transformations

Position representation of r⃗, p⃗ operators

ˆ⃗r = r⃗× , (21)

ˆ⃗p = −iℏ∇⃗ , (22)

⟨r⃗|ˆ⃗r|r⃗′⟩ = δ(r⃗ − r⃗′)r⃗ , (23)

⟨r⃗| ˆ⃗p|r⃗′⟩ = −iℏδ(r⃗ − r⃗′)∇⃗ . (24)

Completeness relation on H1:

1 =
∑
α

|α⟩ ⟨α| (25)

For a trivial Bogoliubov transformation,

B1 = {|µ⟩}, a+µ → B′
1 = {|λ⟩}, b+µ , (26)

we have the relations

|µ⟩ =
∑
λ

|λ⟩ ⟨λ|µ⟩ ≡
∑
λ

Cλµ |λ⟩ , ⟨µ| =
∑
λ

⟨µ|λ⟩ ⟨λ| =
∑
λ

C∗
λµ ⟨λ| , (27)

a+µ =
∑
λ

Cλµb
+
λ , aµ =

∑
λ

C∗
λµbλ . (28)

The unitarity of the transformation can be expressed as∑
λ

C∗
λµCλµ′ = δµµ′ , (29)
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from which the inverse transformation rules can be found, such as for example

b+λ =
∑
µ

C∗
λµ
a+µ . (30)

For quasi-particles, a vacuum associated to a complete set of quasi-particle creation and
annihilation operators {β+

α , βα} satisfies βα |Φ⟩ = 0. General Bogoliubov transformations
from {β̃α, β̃

+
α } to {βλ, β

+
λ } read

βλ =
∑
α

U∗
αλβ̃α + V ∗

αλβ̃
+
α , (31)

β+
λ =

∑
α

Vαββ̃α + Uαλβ̃
+
α , (32)

and the inverse

β̃α =
∑
λ

Uαλβλ + V ∗
αλβ

+
λ , (33)

β̃+
α =

∑
λ

Vαββλ + U∗
αλβ

+
α . (34)

This can be put in matrix form (see notes page 32). Note that Bogoliubov transformations
change the vacuum and associated Hilbert spaces HN . A trivial transformation (i.e., V = 0)
does not change the associated vacua.

3 Wick theorem

Normal product: bring all annihilation operators to the right of all creation operators, and
multiply by the signature of the permutation. Note: this depends on the set of operators
and hence on the vacuum |Φ⟩. By definition, we have

⟨Φ|: ABC...Z :|Φ⟩ = 0 . (35)

Contraction: the difference between an operator and its normal product, i.e.

AB = AB− : AB : . (36)

We have

AB =
⟨Φ|AB|Φ⟩
⟨Φ|Φ⟩

. (37)

Wick theorem: page 56 of the notes.
Generalized Wick theorem: page 63 of the notes.
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4 Slater determinants and particle/hole excitations

Working in the basis B1 = {bα, b+α}, a Slater determinant of HN is defined like1

|Φ⟩ =
N∏
i=1

b+i |0⟩ . (38)

The conventions used are such that

a, b, c, . . . unoccupied/particle states
i, j, k, . . . occupied/hole states

Taking the Slater determinant as Fermi vacuum and these conventions, we have

annihilators: b+i ba
creators: bi b+a

Particle/hole excitations: (watch out for the reversed order in the second part)∣∣Φab...
ij...

〉
= b+a b

+
b · · · bjbi |Φ⟩ . (39)

In an arbitrary basis {aλ, a+λ }, the elementary contractions are2

a+αa
+
β = 0 (40)

a+αaβ = ρβα (41)

aαa
+
β = δαβ − ραβ (42)

aαaβ = 0 (43)

In basis B1, this is simplified as ρ becomes block-diagonal, i.e.:

ρβα = δβiδαi . (44)

Therefore, we have:

a+αaβ = δαiδαβ (45)

aαa
+
β = δαaδαβ (46)

1We are following the conventions of the lecture notes. Note that one should swap a ↔ b when reading
Practice 3.

2Watch out for the reversed order of indices in the definition of ρ.
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5 Mean-field and Hartree-Fock

Using Wick theorem, the Hamiltonian in an arbitrary basis {aλ, a+λ } reads

H =
∑
αβ

tαβραβ +
1

2

∑
αβγδ

vαβγδργαρδβ +
∑
αβ

hαβ : a+αaβ : +
1

4

∑
αβγδ

vαβγδ : a
+
αa

+
β aδaγ : , (47)

where (see also equations (17) and (19))

hαβ = tαβ +
∑
γδ

vαγβδρδγ . (48)

The HF partitioning is H = H0 +H1, with

H0 = H0b
0 +H1b

0 (49)

=
∑
αβ

tαβ +
1
2

∑
αβγδ

vαβγδργαρδβ +
∑
α

eα : b+α bα : (50)

H1 = H1b
1 +H2b

1 (51)

=
∑
αβ

h̆αβ : b+α bβ : +1
4

∑
αβγδ

vαβγδ : b
+
α b

+
β bδbγ : , (52)

where Hnb denotes the n-body part of the operator. Here, we defined

h̆αβ = hαβ − eαδαβ . (53)

The Fermi vacuum from equation (38) and particle/hole excitations from (39) are orthonor-
malized eigenstates of H0 in HN , with eigenvalues

ϵ+ (ea + eb + · · · )− (ei + ej + · · · ) , ϵ = H0b
0 . (54)

Koopman’s theorem: Within HF, we have

⟨Φa|H|Φa⟩ − ⟨Φ|H|Φ⟩ = ea , (55)

⟨Φi|H|Φi⟩ − ⟨Φ|H|Φ⟩ = −ei . (56)

Brillouin’s theorem: Within HF, H1 does not couple |Φ⟩ to 1-particle/1-hole excitations:

⟨Φa
i |H1|Φ⟩ = 0 . (57)
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