Symmetries in Quantum Mechanics

(14/01/2013 (13u30-20u45))

- A carbon dioxide molecule can be modeled as three interacting point particles (two of mass $m_{\rm O}$, one of mass $m_{\rm C}$), with postion vectors $\vec{r}_{\rm O_1}$, $\vec{r}_{\rm C}$, $\vec{r}_{\rm O_2}$, which in static equilibrium are lying on a line, arranged as ${\rm O-C-O}$. In (x,y,z) coordinates such an equilibrium configuration is given e.g. by $\vec{R}_{\rm O_1}=(0,0,-a)$, $\vec{R}_{\rm C}=(0,0,0)$, $\vec{R}_{\rm O_2}=(0,0,+a)$. The nontrivial vibrational normal modes of the molecule around this static equilibrium configuration are given by two transversal modes T_x and T_y , a symmetric longitudinal mode L_s and an antisymmetric longitudinal mode L_a .
 - (a) What is the spatial symmetry group G of the equilibrium configuration?
 - (b) Write out the four normal modes explicitly, i.e. as $\vec{r}_{\rm C} = T_x(t) \vec{v}_{x,{\rm C}} + T_y(t) \vec{v}_{y,{\rm C}} + L_s(t) \vec{v}_{s,{\rm C}} + L_a(t) \vec{v}_{a,{\rm C}}$ etc for suitable constant vectors $\vec{v}_{x,{\rm C}}$, $\vec{v}_{x,0_1}$, etc, with $T_x(t) = \sin(\omega_x t + c_x)$ etc. No need to relate the mode frequencies to morge fundamental quantities, but do show that these modes are indeed decoupled.
 - (c) Discuss how the normal modes transform under the symmetry group G of the equilibrium configuration.
 - (d) Find the quantum normal mode energy eigenfunction $\psi(T_x, T_y, L_s, L_a)$, which will be characterized by four quantum numbers (n_1, n_2, n_3, n_4) , and discuss how the symmetry group G is represented on the energy levels.
 - (e) Discuss the selection rules for matrix elements of the form

$$\langle n_1, n_2, n_3, n_4 | \vec{E} \cdot (\vec{r}_{O_1} + \vec{r}_{C} + \vec{r}_{O_2}) | n'_1, n'_2, n'_3, n'_4 \rangle$$
.

Here \vec{E} is some constant vector. (Such matrix elements appear e.g. in radiative dipole transition rates.)

2 Come up with an original (not just copied from the book) exam-type problem relevant to the material covered in this course and solve it.