Symmetries in Quantum Mechanics Final Exam — Friday January 20, 2012

- 1. The Wigner-Eckart theorem: what's it good for? (in a few lines)
- 2. Under what circumstances is it possible to simultaneously measure with arbitrary precision energy and (i) position, (ii) momentum, (iii) angular momentum and (iv) velocity, of a particle in a static electric field? And in a static magnetic field?
- 3. A particle is in a state with wave function $\psi(x, y, z) = (x + y)f(r)$, where $r = \sqrt{x^2 + y^2 + z^2}$.
 - (a) Argue using simple symmetry reasoning that $\langle \chi | \psi \rangle = 0$ for any $|\chi \rangle$ that is even under parity or odd under the exchange of x and y coordinates.
 - (b) What are the possible outcomes for measurements of L^2 and L_z , and with what probabilities?
 - (c) Let $|n\ell m\rangle$ be a hydrogen wave function. For which values of ℓ , m is it guaranteed that $\langle n\ell m | z | \psi \rangle = 0$, for which that $\langle n\ell m | x^2 y^2 | \psi \rangle = 0$, and for which that $\langle n\ell m | L_+ | \psi \rangle = 0$? (Here $L_+ = L_x + iL_y$.)
- 4. A system consists of 100 spin 1 particles. Can you explicitly construct a state with total spin quantum numbers (J, M) = (100, 99)?
- 5. (a) Two atoms are slowly brought towards each other. What will happen to their energy spectra?
 - (b) Three Helium-3 atoms walk into a bar. All energy levels of this trio are doubly degenerate. What can be done to undo their doubling?