Exam: Spectral Theory and Operator Algebras

June 14 2019

- 1. Let X be a locally compact Hausdorff topological space. Let $C_b(X)$ be the unital C^* -algebra of all continuous and bounded functions $X \to \mathbb{C}$. Take $f \in C_b(X)$, show that the spectrum is given by $\sigma(f) = \overline{f(X)}$.
- 2. Let A be unital C^{*}-algebra. Observe the assignment $p \mapsto 2p-1$ from the projections $p \in A$ to the self adjoint unitaries of A. Show that this is a bijection. Deduce the inverse map.
- 3. Let A be a non unital C^{*}-algebra and ϕ a state. Let a_{λ} be a net in A such that $a_{\lambda}b \to 0$ for all $b \in A$. Show that $\phi(a_{\lambda}) \to 0$.
- 4. Let $A \subseteq \mathcal{L}(H)$ be a concrete C^* -algebra and M = A''. Show that for every unitary u in M, there exists a net of unitaries v_{λ} in A, such that $v_{\lambda} \to u$ in the strong operator topology.

Hint: Remember that $\exp(it) = \cos(t) + i\sin(t)$ for all $t \in \mathbb{R}$.

- 5. Let $S \in \mathcal{L}(l^2(\mathbb{N}))$ be the one-sided shift operator given by $S(x_1, x_2x_3, ...) = (0, x_1, x_2, ...)$. Let \mathcal{T} be the Toeplitz algebra with $t \in \mathcal{T}$ its universal isometry.
 - (a) Show that there exists a representation $\pi : \mathcal{T} \to \mathcal{L}(l^2(\mathbb{N}))$ such that $\pi(t) = s$.
 - (b) Show that π is irreducible.

Hint: What happens when π is restricted to the ideal generated by $1 - tt^*$?

- 6. Let $\epsilon \in (0, 1)$ be a number.
 - (a) Justify the existence of the universal C^* -algebra $B_{\epsilon} = C^*(s \mid ||ss^* \mathbf{1}|| \le \epsilon)$.
 - (b) Show that the Toeplitz algebra \mathcal{T} is isomorphic to a quotient of B_{ϵ} .
 - (c) Show there exists a unital embedding $\mathcal{T} \hookrightarrow B_{\epsilon}$.