Exam Groups and Symmetries

student

January 2021

Theory

You have 30 minutes for this part.

- 1. Let \mathfrak{g} be a Lie algebra. Define $\mathfrak{h} = [\mathfrak{g}, \mathfrak{g}]$. What is the name of \mathfrak{h} and is it an ideal?
- 2. What are positive roots? Define simple roots.
- 3. How many fundamental weights are there? Define them.
- 4. What are the quaternion matrices used for, in the context of real lie algebras? Choose one method and briefly explain.
- 5. Compare SU(2) and SO(3). Connected, simply connected, covering group, representations.
- 6. What is a basic module? Is the tensor product of two basic modules irreducible?
- 7. Explain the difference between regular and special subalgebras. Give an example of both for $\mathfrak{su}(3)$.

Exercises

Due to the measures surrounding Covid-19, you had 2,5 hours for this.

1

Basically do everything we have done in the course for the lie algebra Sp(4). You were given the basis that was also in the book for C_2 .

1. Check that the basis elements of the CSA are in Sp(4).

- 2. Check that the basis step operators are in Sp(4).
- 3. Calculate the commutation relations between these.
- 4. Defining the following 4 roots as positive, which ones are the simple roots? Name them as was done in the course.

$$(1, -1), (2, 0), (1, 1), (0, 2)$$

- 5. What is the height of each root? What is the highest root? How do you know?
- 6. Use the definition of H^i , to find H^1 and H^2 as linear combination of the first basis of the CSA.
- 7. Give the cartan matrix.
- 8. Give G_{ij} by considering the inner product of H^i and H^j . Check that it relates to A^{ij} as it should.
- 9. Calculate G^{ij} and the fundamental weights.
- 10. Draw a diagram with the roots and the fundamental weights.

$\mathbf{2}$

Derive from the definition the character formule of a Verma module of A_1 in function of the highest weight Λ . Recall how we did this for the finite dimensional highest weight representation of A_1 , find this result via your earlier derived formula.