RELATIVITY (01/02/2013 (9u00-13u30))

- (a) Show that the Weyl tensor $C^{\mu}_{\nu\rho\sigma}$ is left invariant by a conformal transformation.
 - (b) Show that any Killing vector satisfies

$$\nabla_{\mu} \nabla_{\rho} K^{\mu} = R_{\sigma\nu} K^{\nu}$$
$$K^{\lambda} \nabla_{\lambda} R = 0$$

Deduce that in Minkowski space-time the components of Killing covectors are linear functions of the coordinates.

- (a) Let *E* denote the maximum energy that can be extracted from a Kerr black hole in the Penrose process. The efficiency of this process is $\eta \equiv E/M$ where *M* is the initial mass of the black hole. Calculate what is the largest possible value of η .
 - (b) Evaluate the Komar integral for the angular momentum of an asymptotically flat axisymmetric space-time tot verify that J = Ma for the Kerr black hole with rotation parameter a.
 - (c) The specific heat of a charged black hole of mass M, at fixed charge Q, is

$$C \equiv T_{\rm H} \left. \frac{\partial S_{\rm BH}}{\partial T_{\rm H}} \right|_Q,$$

where $T_{\rm H}$ is its Hawking temperature and $S_{\rm BH} = \frac{1}{4}A$, where A is the area of the event horizon, show that the specific heat of a Reissner-Nordström black hole is

$$C = \frac{2S_{\rm BH}\sqrt{M^2 - Q^2}}{M - 2\sqrt{M^2 - Q^2}}.$$

Is there a critical value of the mass at which C^{-1} changes sign?

 $\begin{bmatrix} 3 \end{bmatrix}$ The generalization of the Schwarzschild solution to d dimensional space-time is the Schwarzschild-Tangherlini metric

$$ds^{2} = -\left[1 - \left(\frac{a}{r}\right)^{d-3}\right] dt^{2} + \left[1 - \left(\frac{a}{r}\right)^{d-3}\right]^{-1} dr^{2} + r^{2} d\Omega_{d-2}^{2},$$

where a > 0 is constant and $d\Omega_{d-2}^2$ is the standard round metric on S^{d-2} , defined inductively bij $d\Omega_1^2 = d\varphi^2$ and $d\Omega_{i+1}^2 = d\theta_i^2 + \sin^2\theta_i d\Omega_i^2$ for $i \ge 1$, with $0 < \varphi \le 2\pi$ and $0 \le \theta_i \le \pi$. Show that there are no stable bounded massive orbits for $d \ge 5$. Why might you have expected this result?

[4] Consider de Sitter space in static coordinates

$$ds^{2} = -\left(1 - \frac{\Lambda}{3}r^{2}\right)dt^{2} + \left(1 - \frac{\Lambda}{3}r^{2}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}.$$

- (a) Identify the Killing horizon. What is its surface gravity? Does the Killing horizon have a nonzero temperature?
- (b) Draw the horizon on a conformal diagram. Do the static coordinates cover the entire space-time? What is the significance of the horizon from the viewpoint of a single observer in de Sitter space?

- 5 (a) Consider the Robertson-Walker universe that best fits the current observations, with density parameters $\Omega_{R0} = 10^{-4}$, $\Omega_{M0} = 0.3$ and $\Omega_{\Lambda 0} = 0.7$. Sketch the behavior of $\rho_{\rm crit}\Omega$ for the three Ω 's as a function of the scale factor a on a log scale from $a = 10^{-35}$ to $a = 10^{35}$. Indicate the Planck time, nucleosynthesis and today.
 - (b) Sketch the evolution of the scale factor in the same universe. Indicate the period during which large-scale structures such as galaxies form. What would the universe have been like if Λ had been significantly larger?