Let X be a Banach space and $Y \subset X$ a closed vector subspace. We call Y a *complemented subspace* if and only if there exists a closed vector subspace $Z \subset X$ satisfying $Y \cap Z = \{0\}$ and X = Y + Z.

Part A. Prove that every closed subspace of a Hilbert space is a complemented subspace.

Part B. Let X be a Banach space and $Y \subset X$ a closed complemented subspace. Take a closed vector subspace $Z \subset X$ satisfying $Y \cap Z = \{0\}$ and X = Y + Z.

- Let $Y \oplus Z$ be the Banach space with ||(y,z)|| = ||y|| + ||z||. Prove that the linear map $\theta: Y \oplus Z \to X: \theta(y,z) = y + z$ has a bounded inverse.
- Deduce the existence of $\alpha > 0$ such that $||y + z|| \ge \alpha ||y||$ for all $y \in Y, z \in Z$.

Part C. Let X be a Banach space and $Y \subset X$ a vector subspace. Prove that the following two statements are equivalent.

- Y is closed and complemented.
- There exists a bounded linear map $E: X \to X$ satisfying $E \circ E = E$ and Y = E(X).