Consider the Banach space $\ell^{\infty}(\mathbb{N})$ with the supremum norm $\|\cdot\|_{\infty}$. Define the linear maps

$$L_n: \ell^{\infty}(\mathbb{N}) \to \mathbb{C}: L_n(f) = \frac{1}{n} \sum_{k=n+1}^{2n} f(k) .$$

- 1. Prove that (L_n) is a sequence in the unit ball of $\ell^{\infty}(\mathbb{N})^*$.
- 2. Let $L \in \ell^{\infty}(\mathbb{N})^*$ be a weak^{*} limit point of the sequence (L_n) . Why does such an L exist?
- 3. Prove that L is a Banach limit in the sense of Theorem 3.7.