
Exam solutions
Statistical Mechanics
15 December 2015, 14:00-16:00

The total score is 20 points!

Problem 1 (2.5 points)

Consider three identical non-interacting fermions in three different energy levels described
by the wave functions φk(~q), φm(~q) and φl(~q). Use this to determine the three particle wave
function Ψ(~q1, ~q2, ~q3).

Solution: The wave function of a many body system of non-interacting fermions should
be antisymmetric under interchange of the positions of the particles. This leads to the
many-body wave function

Ψ(~q1, ~q2, ~q3) = c[φk(~q1)φl(~q2)φm(~q3) + φk(~q3)φl(~q1)φm(~q2) + φk(~q2)φl(~q3)φm(~q1)

− φk(~q1)φl(~q3)φm(~q2)− φk(~q3)φl(~q2)φm(~q1)− φk(~q2)φl(~q1)φm(~q3)] , (1)

whee c is a normalization constant. This can be expressed compactly as the following
determinant

Ψ(~q1, ~q2, ~q3) = c

∣∣∣∣∣∣
φk(~q1) φk(~q2) φk(~q3)
φl(~q1) φl(~q2) φl(~q3)
φm(~q1) φm(~q2) φm(~q3)

∣∣∣∣∣∣ . (2)

If we assume that the single-particle wave functions are properly normalized, i.e.∫
|φk(~q)|2d~q = 1 . (3)

and imposing ∫
|Ψ(~q1, ~q2, ~q3)|2d~q1d~q2d~q3 = 1 , (4)

fixes

c =
1√
6
. (5)

Problem 2 (2.5 points)

Consider a three-dimensional quantum harmonic oscillator with energy levels given by

ε = ~ω
(
n1 + n2 + n3 +

3

2

)
,

where n1,2,3 = 0, 1, 2, 3, . . .. With this at hand:



1. Calculate the average energy of the system E as a function of the temperature T .

2. Analyze the low and high temperature behavior of E. Show that at high temperatures
the system behaves according to the equipartition theorem.

Solution: The three-dimensional quantum harmonic oscillator has energy levels given
by

ε = ~ω
(
n1 + n2 + n3 +

3

2

)
, (6)

where n1,2,3 = 0, 1, 2, 3, . . ..
The partition function is

Z =
∞∑

n1,2,3=0

e−βε =

[
∞∑
n=0

e−β~ω(n+
1
2
)

]3
=

[
e−

β~ω
2

∞∑
n=0

(
e−β~ω

)n]3

=

[
e−

β~ω
2

1− e−β~ω

]3
=

1

8 sinh3(β~ω
2

)
. (7)

where we have used the explicit summation of the geometric series

∞∑
n=0

qn =
1

1− q
, 0 < q < 1 . (8)

The average energy of the system is then

E = − ∂

∂β
log(Z) =

3

2
~ω coth

(
β~ω

2

)
. (9)

At low temperatures we have β � 1 and we can use coth(x) ≈ 1 for x� 1 to find

E ≈ 3

2
~ω(1 + 2e−β~ω) . (10)

Thus at low temperature the average energy, to leading order, is equal to the energy of the
ground state, i.e. E ≈ ε|n1=n2=n3=0.

At high temperatures we have β � 1 and we can use coth(x) ≈ 1
x

+ x
3

for x� 1 to find

E ≈ 3kBT +
~2ω2

4

1

kBT
+O(β3)~ω . (11)

Thus at high temperature, and to leading order, we recover the expected result from the
equipartition theorem E = n

2
kBT where n = 6 is the number of “quadratic” degrees of

freedom of the oscillator.

Problem 3 (3 points)

Consider a quantum system with two non-interacting particles which can be each in 4
different quantum states. A ground state with energy 0 and 3 degenerate states with energy
ε. Calculate the canonical partition functions Z(T ) for the case that the two particles are
two identical bosons or two identical fermions.



Solution: Let us call the available energy states (0, 1, 2, 3). With the notation (p, q) we
will mean that one particle occupies state p and the other state q.

Consider the case of two indistinguishable bosons first. There is one possible configura-
tion, namely (0, 0), for which both particles are in the ground state with energy 0. There are
3 possible configurations, (0, 1), (0, 2) and (0, 3) for which one particle is in the ground state
and one in one of the 3 degenerate excited states of energy ε. Finally there are 6 possible
configurations, (1, 1), (2, 2), (3, 3), (1, 2), (1, 3), and (2, 3), for which both particles are in an
excited state. Thus the total partition functions is

ZB = 1 + 3e−βε + 6e−2βε , (12)

where β ≡ kBT .
Now let us study the fermionic system. The particles are again indistinguishable. Due

to the Pauli exclusion principle there cannot be two fermions occupying the same quantum
state. Thus there are 3 configurations with one particle in the ground state and one in an
excited state: (0, 1), (0, 2) and (0, 3). There are also 3 configurations with two particles in
excited states: (1, 2), (1, 3), and (2, 3). Therefore the partition function is

ZF = 3e−βε + 3e−2βε . (13)

Problem 4 (4 points)

Atoms in a solid vibrate about their respective equilibrium positions with small ampli-
tudes. Debye approximated the normal vibrations with the elastic vibrations of an isotropic
continuous body and assumed that the number of vibrational modes g(ω)dω, having angular
frequencies between ω and ω + dω, is given by

g(ω) =
V

2π2

(
1

c3L
+

2

c3T

)
ω2 ≡ 9N

ω3
D

ω2 , ω ≤ ωD ,

g(ω) = 0 , ω > ωD ,

where cL and cT denote the velocities of longitudinal and transversal waves, respectively.
The Debye frequency ωD is determined by∫ ωD

0

g(ω)dω = 3N .

where N is the number of atoms and hence 3N is the number of degrees of freedom. Use
this to

1. Calculate the specific heat at constant volume for this model.

2. Examine its temperature dependence at high as well as low temperatures.

Solution: Using the Bose distribution and the density of states proposed by Debye we
find that the average energy is

E =

∫ ∞
0

~ωg(ω)

eβ~ω − 1
dω =

9N

ω3
D

∫ ωD

0

~ω3

eβ~ω − 1
dω . (14)

Now we use that the specific heat at constant volume is cV = ∂E
∂T

to find

cV = 9kBN

(
T

TD

)3 ∫ TD/T

0

x4ex

(ex − 1)2
dx . (15)



Here we have defined the Debye temperature TD ≡ ~ωD
kB

.
At temperatures much higher than TD we have that TD/T � 1 and thus we can approx-

imate the integral as (we have used ex ≈ 1 + x for |x| � 1)

cV ≈ 9kBN

(
T

TD

)3 ∫ TD/T

0

x2dx = 3kBN . (16)

At temperatures much lower than TD we have that TD/T � 1 and we find

cV ≈ 9kBN

(
T

TD

)3 ∫ ∞
0

x4ex

(ex − 1)2
dx =

12π4

5
kBN

(
T

TD

)3

. (17)

Here we have used the relation ∫ ∞
0

x4ex

(ex − 1)2
dx =

4π4

15
. (18)

Problem 5 (8 points)

What is the pressure of a gas of free bosons in the limit of vanishing temperature, T → 0?
Argue that for T → 0 an ideal Fermi gas will have non-vanishing pressure p0 > 0. We will
now use this fact to study a system of two ideal Fermi gases in three dimensions.

A free sliding piston separates two compartments labeled 1 and 2 with volumes V1 and V2
respectively. An ideal Fermi gas with N1 particles with spin 1/2 is placed in compartment 1
and an ideal Fermi gas with N2 particles with spin 3/2 is placed in compartment 2.

1. Find the density of states g1/2(ε) and g3/2(ε) of the two gases.1

2. Find the pressure of the two gases as a function of their densities N1/V1 and N2/V2 in
the limit T → 0.

3. Find the relative densities of the two gases at mechanical equilibrium in the limit
T → 0.

4. What are the equilibrium densities in the classical limit T →∞?

Solution: We use that the pressure for a gas of non-interacting bosons/fermions is given
by

pV

kBT
= log Ξ = ∓

∑
γ

log
(
1∓ eβ(µ−εγ)

)
, (19)

where the upper sign is for bosons and the lower sign is for fermions. For bosons we have
that the chemical potential is bounded above µ ≤ minγεγ and thus at low temperatures,
β →∞, we have log

(
1∓ eβ(µ−εγ)

)
→ 0 and thus the pressure of the free boson gas vanishes.

In the case of fermions we can use a continuous approximation to write

lim
β→∞

p =
1

V

∫ εF

0

dεg(ε)(εF − ε) = p0 > 0 , (20)

where εF is the Fermi energy.

1Hint: A particle of spin s has 2s+ 1 possible spin orientations.



We can use that for free particles we have ε = |p|2
2m

and that for free particles in a box we
have ~p = h

L
~n where ~n = {n1, n2, n3} is a vector of integers to find that that the density of

states for a spin s particle is

(2s+ 1)
V

h3
4πp2dp = (2s+ 1)

4πV

h3
m3/2
√

2εdε ≡ gs(ε)dε . (21)

the particle density for β � 1 is given approximately by

N

V
=

1

V

∫ ∞
0

dε
g(ε)

eβ(ε−µ) + 1
≈
∫ εF

0

dεg(ε) . (22)

Thus for a particle of spin s one finds

N

V
= (2s+ 1)

8
√

2πm3/2

3h3
ε
3/2
F . (23)

We can now use (20), (21) and (23) to find the pressure at zero temperature

p0 =
2

5

(
(2s+ 1)

8
√

2πm3/2

3h3

)2/3(
N

V

)5/3

. (24)

For the problem at hand we find

p0 =
2

5

(
16
√

2πm
3/2
1

3h3

)2/3(
N1

V1

)5/3

, s =
1

2
,

p0 =
2

5

(
32
√

2πm
3/2
2

3h3

)2/3(
N2

V2

)5/3

, s =
3

2
.

(25)

At mechanical equilibrium we have that the pressure of the two gases is the same and thus
for the relative density we find

N1/V1
N2/V2

≈ 22/5

(
m2

m1

)3/5

. (26)

At high temperatures we have β � 1 and we can use the classical ideal gas approximation
to find

p1 ≈ kBT
N1

V1
, p2 ≈ kBT

N2

V2
, (27)

and thus at mechanical equilibrium, i.e. p1 = p2, we have

N1/V1
N2/V2

≈ 1 . (28)


