Juni 2021 Operator Algebras

Information

The best 3 questions are considered for the final mark. The official notes and unsolved excercise sheets can be used.

1

Let A be a C^{\star} algebra. Prove the equivalence between:

- $A \neq \mathbb{C}1$
- There exist positive a, b of norm 1 so that ab = 0
- There exists a unitary u with $\{-1,1\} \subset \sigma(u)$

$\mathbf{2}$

Let A be a C^{\star} algebra.

- Show that every character on A is a pure state. Hint: T are the extreme points of the closed unit disk.
- If A is noncommutative, show that there exists a pure state that is not a character.

3

Let $A \subset \mathcal{L}(\mathcal{H})$ a concrete C^* algebra with $1 \in A$. Let M = A''. Prove that for every unitary $u \in M$, there is a net v_{λ} in A converging to u in the Strong Operator Topology. Hint: exp(it) = cos(t) + isin(t) for real t

4

Let $\varepsilon \in [0, 1)$.

- The universal $A_{\varepsilon} = C^{\star}(s_{\varepsilon} \mid ||s_{\varepsilon}^{\star}s_{\varepsilon} 1|| < \varepsilon)$ exists
- $\forall \delta \in (\varepsilon, 1)$, there exists a surjective *homomorphism $A_{\delta} \to A_{\varepsilon}$ with $s_{\delta} \to s_{\varepsilon}$
- If $\varepsilon_n \to 0$ is any decreasing sequence converging to zero, the limit of the inductive system $\{A_n \to A_{\varepsilon_{n+1}}\}$ is isomorphic to the Toepliz algebra \mathcal{T}