QFT Exam

7 Januari 2019

1 Question 1 : Classical Fields

Given a Dirac spinor field ψ and two real boson fields ϕ_1 and ϕ_2 , we have a Lagrangian density

$$\mathcal{L} = \frac{1}{2}\partial_{\mu}\phi_{1}\partial^{\mu}\phi_{1} + \frac{1}{2}\partial_{\mu}\phi_{2}\partial^{\mu}\phi_{2} - \frac{m^{2}}{2}\phi_{1} - \frac{m^{2}}{2}\phi^{2} - \tilde{m}^{2}\phi_{1}\phi_{2} + i\bar{\psi}\partial\!\!\!/\psi - M\bar{\psi}\psi + i\lambda\phi_{1}\bar{\psi}\gamma_{5}\psi$$

with $\lambda, M, m, \tilde{m} \in \mathbb{R}$ different from zero and $m^2 > \tilde{m}^2$.

- 1. What is the dimension of λ ? Why is there a factor *i* in the last interaction term?
- 2. How should ϕ_1 and ϕ_2 transform under Lorentz transformations so that \mathcal{L} is invariant under the full Lorentz group.
- 3. What are the asymptotic states of this theory?

2 Question 2 : Gauge Invariance of Feynman amplitudes

- 1. Why is $e^+e^- \rightarrow \gamma$ not a physical process?
- 2. Look at the physical proces $e^+e^- \rightarrow \gamma\gamma$. The positron has momentum and helicity (p_1, r_1) and the electorn has (p_2, r_2) . The photons have (k_1, s_1) and (k_2, s_2) . Give the two Feynman diagrams that desribe this process in leading order. Write down the Feynman amplitudes explicitly.
- 3. Replace in the preceding expressions $\epsilon_{s_1}(k_1)$ with k_1 and show that the two terms cancel each other.
- 4. Explain why this happens.