Statistical Inference and Data Analysis

Michaël Liefsoens

June 30th, 2020

Disclaimer: Due to Covid19, this exam was supposed to be finished in three hours, instead of the usual four hours.

1 Closed Book Part

1.1 Question 1

Let $R(T_n, \theta)$ be a risk function.

- a) Define what is meant by a Bayes estimator.
- b) Let X be a r.v. with density $f(\cdot, \theta)$ and consider a continuous prior $\pi(\theta)$. Provide arguments as to why the Bayes estimator $T_B(\mathbf{X})$ is given by

$$T_B(\boldsymbol{X}) = \frac{\int_{\Theta} \theta \left[\prod_{i=1}^n f(x_i; \theta)\right] \pi(\theta) \, d\theta}{\int_{\Theta} \left[\prod_{i=1}^n f(x_i; \theta)\right] \pi(\theta) \, d\theta}$$

- c) Now consider $X \sim \text{Bernoulli}(\theta)$ and suppose that the prior is given by a $\text{Beta}(\alpha, \beta)$ distribution. Give the Bayes estimator for θ .
- d) What is its distribution?
- e) Give a (1α) credible region for θ .

1.2 Question 2

Suppose we have $Y_{ij} = \mu_i + \epsilon_{ij}$ for i = 1, ..., k and $j = 1, ..., n_i$. Suppose $\epsilon_{ij} \sim \mathcal{N}(0, \sigma^2)$ and independent. Explain how you would test whether or not the μ_i are equal.

1.3 Question 3

Let $\boldsymbol{X} = \begin{pmatrix} \boldsymbol{X}_1 \\ \boldsymbol{X}_2 \end{pmatrix}$ be 2*p* multivariate normally distributed with $\boldsymbol{X} = \begin{pmatrix} \boldsymbol{X}_1 \\ \boldsymbol{X}_2 \end{pmatrix} \sim \mathcal{N}_{2p} \begin{pmatrix} \begin{pmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma} & \boldsymbol{\Sigma} \\ \boldsymbol{\Sigma} & \lambda \boldsymbol{\Sigma} \end{pmatrix} \end{pmatrix}$, with $\lambda > 1$.

Define $\boldsymbol{Y} = \begin{pmatrix} \boldsymbol{X}_1 \\ \boldsymbol{X}_2 - \boldsymbol{X}_1 \end{pmatrix}$

- a) What is the distribution of \boldsymbol{Y} ?
- b) Show that X_1 and $X_2 X_1$ are independent.

2 Open Book Part

2.1 Question 1

Consider X with cumulative distribution function

$$F_X(x) = P(X \le x) = (1 - e^{-x})^{\frac{1}{\theta}}, x \ge 0, \theta > 0.$$

- a) Find the cumulative distribution of $W = -\log(1 e^{-X})$. What is its distribution?
- b) Find the MLE for θ and state the asymptotic normality result.
- c) Find an approximate (1α) confidence interval for θ . Limit the use of approximations.
- d) Use (a) to give an exact (1α) confidence interval.

2.2 Question 2

Define $\boldsymbol{X} = \begin{pmatrix} U_1 & U_2 & U_1 + U_2 \end{pmatrix}^T$ with U_1 and U_2 uniformly distributed over [0,1].

- a) Calculate the variance of \boldsymbol{X} .
- b) Explain how you would calculate the principal components of X, say Z.
- c) Show that $\operatorname{corr}(\boldsymbol{Z}_i, \boldsymbol{X}_k) = \sqrt{\frac{\lambda_i}{\boldsymbol{\Sigma}_{kk}}} (\boldsymbol{u}_i)_k$, for i, k = 1, 2, 3. Here, \boldsymbol{u}_i are the principal directions of \boldsymbol{X} and $\boldsymbol{Z} = \begin{pmatrix} \boldsymbol{u}_1^T \boldsymbol{X} & \boldsymbol{u}_2^T \boldsymbol{X} & \boldsymbol{u}_3^T \boldsymbol{X} \end{pmatrix}^T$, the vector of scores.