Examen Statistische mechanica 30 januari 2020

1 Oral

1.1 classical

Virial expansion

For a gas we define $n = \frac{N}{V}$ The virial expansion is defined as follows.

$$P = nk_bT(1 + b_2n + \ldots)$$

Also define a potential:

$$\phi = \begin{cases} +\infty & \mathbf{r} < \sigma \\ \epsilon & \sigma < \mathbf{r} < 2\sigma \\ 0 & \mathbf{r} > 2\sigma \end{cases}$$

Discus the temperature dependance of b_2 and use explicit calculations with $\phi(\mathbf{r})$. Discus the case $\epsilon > 0$, $\epsilon < 0$, $\epsilon = 0$ Mondelinge bijvraag: Wat is de dimensie van b_2

1.2 Quantum

De blackbody die op sommige andere examens staat

2 Written

2.1 Classical

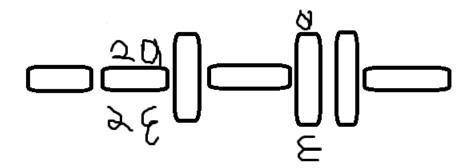
Speed of particles of LJ fluid (5pts)

$$\phi_{\rm lJ}({\rm r}) = \epsilon \left[\left(\frac{\sigma}{{\rm r}}\right)^{12} - \left(\frac{\sigma}{{\rm r}}\right)^6 \right]$$

Vind v^{*}, the most likely value of the speed of the particles speed.

Polymer model(7pts)

Consider a rigid polymer consisting of N monomers. Each monomer can be found in 2 states with energies ϵ and 2ϵ and length a and 2a as shown in the figure. Calculate average length $\langle L \rangle$ and variance $\sigma_L^2 = \langle L^2 \rangle - \langle L \rangle^2$



Classical paramagnetism(8pts)

Assume each particle carries magnetic momentum $\vec{\mu}$, which is fixed of magnitude, but can assume a random orientation in 3D. The hamiltionan for N particles is

$$\mathcal{H} = -\sum_{i=1}^{\mathrm{N}} ec{\mu}_{\mathrm{i}} \cdot ec{\mathrm{H}}$$

Where \vec{H} is the magnetic field and $\vec{\mu_i}$ the magnetic moment of particle i

a) Calculate configurational partition function by integrating over all possible orientations of $d\vec{\mu}$, while keeping their orientations fixed $\|\vec{\mu}\| = \mu$ (hint: use a coordinate system where H is in the z direction)

b) calculate total average magnetic moment

$$\vec{M} = \sum_{i = 1}^{N} < \vec{\mu} >$$

and show that it's orientated parallel to \vec{H}

c) Obtain from the calculations in b)

$$\mathcal{X} = \frac{1}{N} \frac{\partial M}{\partial H}$$

with $M = \|\vec{M}\|$ and $H = \|\vec{H}\|$

d) Show that the model describes a paramagnet e.g. that $\mathcal{X} > 0$ and find the behavior of \mathcal{X} at high temperatures

2.2 Quantum

Dieteric equation of state(6pts)

The equation is given by

$$P(v-Nb) = Nk_B Te^{\frac{-aN}{Vk_BT}}$$

Where P, V, T are pressure, volume and temperature. a and b are some positive real numbers. Find P_c , T_c and V_c for this equation of state.

N particles(7pts)

Consider N distuinguisable and non-interacting particles. The single particle energy-spectrum is $\epsilon_n = n\epsilon$ where $\epsilon > 0$. The degenary of the n-th state is $g_n = n + 1$. Compute the partition function for the N-particle system and $\langle E \rangle$. Evaluate the average E-fluctations defined by $\langle (\Delta E)^2 \rangle = \langle E^2 \rangle - \langle E \rangle^2$

Quantum gasses(7pts)

Consider a 3D quantum gas of bosons or fermions. Assume that teh single particle energy is given by $\epsilon = p^{\alpha}$ where p is the absolute value of the momentum of the particle and $\alpha > 0$ and real. Using the grand canonical partition function, show the following relation:

$$\mathrm{PV} = \frac{\alpha}{3}\mathrm{E}$$