(16 tussenliggende versies door 8 gebruikers niet weergegeven)
Regel 1:
Regel 1:
==Algemene informatie==
=Algemene informatie=
...
Voor het academiejaar 2013-2014 werd het boek ''Lectures on Quantum Mechanics'' van Steven Weinberg gebruikt. De jaren voordien werd ''Modern Quantum Mechanics" van Sakurai gebruikt.
[[Afbeelding:Frederik.jpg|right|200px|thumb|Professor Frederik Denef]]
==Informatie over het examen==
=Informatie over het examen=
...
Het examen in 2013-2014 was schriftelijk en open boek waarbij alles toegelaten was behalve toegang tot het internet en communicatie met de andere studenten.
==De afgelopen examens==
=Examens=
=== Maandag 16 januari 2012 ===
==Academiejaar 2011-2012==
# symmetries in quantum mechanics: what are they good for?
[[Media:16 januari 2012.pdf|16 januari 2012 (NM)]]
# Say we have an orthonormal set of three states {psi_x, psi_y, psi_x} (say of some atom), on which rotations act in the standard vector representation, i.e. they transform among each other in the same way as a vector (x,y,z) in R³
## How do the operators corresponding to angular momentum Lx, Ly and Lz act on these states?
## What are the possible values of Lz?
## if we prepare a beam of these atoms, prepared to be in states restricted to be linear combinations of the above three states, and we first pass this beam through a filter that allows through only atoms with maximally positive spin in the z-direction, next through a filter that allows only atoms with maximally positive spin in the z-direction, then what fraction of the original beam will survive?
## Can this result change if the beam passes through some homogeneous magnetic field between two subsequent detectors?
#
## A spin 1 particle at rest decays into a spin 1/2 particle B and a spin 1/2 particle C. What are the possible values of the z-components of spin B and C assuming the final (center of mass) orbital angular momentum is measured to be zero?
## What are the other possible values of the final orbital angular momentum that could be measured, and what are the corresponding values of the spins of B and C?
## How do the possibilities get further reduced if you know the intrinsic parities of A, B and C are all even?
## Restricting again to the zero orbital angular momentum sector, and assuming all initial spin states are equally likely, what are the probabilities for the z-components of the spin of B and C?
## How would you solve this last problem for a spin 3 particle A decaying into a spin 1 particle B and a spin 2 particle C? (optionally: solve it)
[[Media:20 januari 2012.pdf|20 januari 2012 (NM)]]
[[Media:23 januari 2012.pdf|23 januari 2012 (NM)]]
[[Media:1 februari 2012.pdf|1 februari 2012 (NM)]]
==Academiejaar 2012-2013==
[[Media:Examen Symmetries in QM (2012-2013)(januari).pdf|14 januari 2013 (NM)]]
Voor het academiejaar 2013-2014 werd het boek Lectures on Quantum Mechanics van Steven Weinberg gebruikt. De jaren voordien werd Modern Quantum Mechanics" van Sakurai gebruikt.
Professor Frederik Denef
Informatie over het examen
Het examen in 2013-2014 was schriftelijk en open boek waarbij alles toegelaten was behalve toegang tot het internet en communicatie met de andere studenten.