Algebra II: verschil tussen versies

Uit Wina Examenwiki
Naar navigatie springen Naar zoeken springen
Fanta (overleg | bijdragen)
Geen bewerkingssamenvatting
 
Fanta (overleg | bijdragen)
Geen bewerkingssamenvatting
Regel 14: Regel 14:


<math>K</math> is normaal over <math>F\Leftrightarrow</math> voor elke velduitbreiding <math>L</math> van <math>K</math> en elk ringmorfisme <math>\sigma : K \rightarrow L</math> met <math>\sigma |_F=Id_F</math> geldt: <math>\sigma(K)\subset K</math>.
<math>K</math> is normaal over <math>F\Leftrightarrow</math> voor elke velduitbreiding <math>L</math> van <math>K</math> en elk ringmorfisme <math>\sigma : K \rightarrow L</math> met <math>\sigma |_F=Id_F</math> geldt: <math>\sigma(K)\subset K</math>.
== Tweede zit 1999-2000 ==
=== Oefening 1 ===
b) Waar of niet waar? Zij <math>K\subset L</math> velden en <math>a,b\in L</math> met dezelfde minimale veelterm <math>f(x)</math> over <math>K</math>. Veronderstel dat <math>L</math> een eindige normale uitbreiding is over <math>K</math>. Dan bestaat er een <math>\sigma\in G(L:K)</math> zodat <math>\sigma(a)=b</math>.
=== Oefening 2 ===
Zij <math>E</math> een eindige normale uitbreiding van <math>\mathbb Q</math>, met Galoisgroep <math>G(E:\mathbb Q)\cong\mathbb Z_4,+</math>.
a) Bewijs dat er <math>a,b\in\mathbb Z</math> bestaan zodat <math>E=\mathbb Q(\sqrt{a+\sqrt{b}})</math>.
b) Geef de stabiele velden t.o.v. <math>E</math> en <math>\mathbb Q</math>.
=== Oefening 3 ===
Geef een basis van de vectorruimte <math>\mathbb Q(1+\sqrt[3]{5},\sqrt[4]{3})</math> over het veld <math>\mathbb Q(\sqrt{3})</math>.


[[Categorie:3bw]]
[[Categorie:3bw]]

Versie van 11 jan 2007 22:18

Eerste zit 1999-2000

Oefening 1

Zij L=(23,3i).

a) Is L=(233i)? Bepaal een minimale veelterm van 233i over .

b) Bepaal G(L,) en LG(L,). Met welke groep is G(L,) isomorf?

Oefening 2

Zij FK velden en K een eindige separabele uitbreiding van F. Toon aan:

K is normaal over F voor elke velduitbreiding L van K en elk ringmorfisme σ:KL met σ|F=IdF geldt: σ(K)K.

Tweede zit 1999-2000

Oefening 1

b) Waar of niet waar? Zij KL velden en a,bL met dezelfde minimale veelterm f(x) over K. Veronderstel dat L een eindige normale uitbreiding is over K. Dan bestaat er een σG(L:K) zodat σ(a)=b.

Oefening 2

Zij E een eindige normale uitbreiding van , met Galoisgroep G(E:)4,+.

a) Bewijs dat er a,b bestaan zodat E=(a+b).

b) Geef de stabiele velden t.o.v. E en .

Oefening 3

Geef een basis van de vectorruimte (1+53,34) over het veld (3).