Kans en maat: verschil tussen versies

Uit Wina Examenwiki
Naar navigatie springen Naar zoeken springen
Geen bewerkingssamenvatting
Regel 20: Regel 20:


== vrijdag 12/05/2009 ==
== vrijdag 12/05/2009 ==
 
Ik zal ze een van de komende dagen eens online gooien.
 




[[Categorie:3bw]]
[[Categorie:3bw]]
[[Categorie:mw]]
[[Categorie:mw]]

Versie van 13 jun 2009 09:59

Inleiding

Dit vak wordt gegeven door professor Quaegebeur. Zo goed als alle vragen zijn mondeling te verdedigen. In juni 2008 kregen we 5 a 6 uur tijd om het examen op te lossen.

maandag 16/06/08

1) (ben niet 100% zeker of ik deze vraag volledig correct formuleer) Zij (Ω,𝔐,μ) een maatruimte. Zij voor alle n fn,f𝔏1(Ω,𝔐,μ) en veronderstel dat ||fnf||10 als n. Definieer nu Enδ:={x | |fnf|(x)>δ}. Bewijs dat Enδ een meetbare verzameling is en bewijs vervolgens dat limnμ(Enδ)=0.

2) Beschouw met de Borel sigma algebra. We definiëren S:={G | G gesloten, μ(Gc)=0}

  • Berekenen S voor diracmaat in 0 en voor de Lebesguemaat
  • Toon aan dat in het algemeen geldt dat  μ(Sc)=0. Gebruik hiervoor (mag je aannemen) de inwendige regulariteit: μ(E)=sup{K,K compact , KE}. We vinden dat S de kleinste gesloten borelverzameling is, waarvan het complement maat nul heeft.
  • Toon aan dat er in het algemeen geen kleinste Borelverzameling bestaat zodat de maat van het complement 0 is (hierbij veronderstellen we dus niet dat de borelverzameling gesloten is!).
  • Definieer de stijgende rechtscontinue functie  F zodanig dat  μ((a,b])=F(b)F(a). Bewijs dat S={x | ε>0:F(xε)<F(x+ε)}

3) Zij X1,X2,X3 onderling onafhankelijke toevalsvariabelen. Toon aan dat X1+X2,X3 ook onafhankelijk zijn.

4) een aantal vragen over absolute continuiteit en singulier zijn

5) een vraag over conditionele verwachting, waarbij een nieuw begrip geïntroduceerd werd: de conditionele variantie.


vrijdag 12/05/2009

Ik zal ze een van de komende dagen eens online gooien.