Declaratieve Talen/oplossingenTeam: verschil tussen versies
Extra oplossing toevoegd |
Geen bewerkingssamenvatting |
||
Regel 105: | Regel 105: | ||
</pre> | </pre> | ||
--[[Gebruiker:Harm.de.weirdt|Harm.de.weirdt]] 12 jan 2012 14:22 (CET) | |||
--[[Gebruiker:Harm|Harm]] |
Versie van 12 jan 2012 13:22
LET OP Deze oplossing werkt alleen voor groepjes van 2 omdat het alle groepen genereerd die mogelijk zijn, duurt het te lang om grotere groepen te maken
Beschrijving predikaten
maakTeam geeft telkens S elementen uit de lijst terug. Stel lijst = [1,2,3,4] en we nemen S=2, dan zal de output [1,2] [1,4] [2,3] zijn.
maakTeams geeft telkens een combinatie van S elementen terug uit de lijst. Stel lijst = [1,2,3,4] en S=2, dan zal de output [[1,2],[3,4]],[[1,3],[2,4]],[[2,3],[1,4]],... zijn.
maak_schedule geeft W keer een uniek element uit de verdeling terug. Stel W=3, dan is de output een lijst met 3 elementen, namelijk 3 combinaties gegenereerd uit de verdeling.
aantalwerkjes telt de mogelijke lengtes van de verdelingen lijst, maakt er een lijst van en neemt een willekeurig element uit de lijst (elke verdeling is even lang).
% T teams en in elk team moeten S studenten % Deel1: verdeling(T,S,Verdeling) verdeling(T,S,Verdeling):- X is T*S, numlist(1,X,List), findall(List2,(maakTeams(List,S,List2)),List3), list_to_set(List3,List4), sorteer(List4,List5), list_to_set(List5,List6), member(Verdeling,List6). maakTeams([],_,[]). maakTeams(List,S,[TeamS|Teams]):-maakTeam(List,S,Team1), sort(Team1,TeamS), findall(X,(member(X,List),\+member(X,TeamS)),Overige), maakTeams(Overige,S,Teams). maakTeam(_,0,[]). maakTeam(List,S,[A|Team]):- S>0, T is S-1, maakTeam(List,T,Team), member(A,List), \+ member(A,Team). sorteer([X],[X]). sorteer([X,Y|Xs],[[L1|L2]|List]):-sort(X,[L1|L2]), sort(Y,[M1|M2]), ( (L1==M1;(member(M,L2),(member(M,M2))))-> sorteer([[L1|L2]|Xs],List) ; sorteer([[M1|M2]|Xs],List) ). %Deel 2 groepeer(T,S,W,Schedule):- findall(Schedule2,(maak_schedule(T,S,W,[],Schedule1),sort(Schedule1,Schedule2)),Schedule3), list_to_set(Schedule3,Schedule4), member(Schedule,Schedule4). %Deel 3 maak_schedule(_,_,0,S,S). maak_schedule(T,S,W,HSchedule,[Sch|Schedule]):- verdeling(T,S,Sch), \+member(Sch,HSchedule), NewW is W-1, maak_schedule(T,S,NewW,[Sch|HSchedule],Schedule). aantalwerkjes(T,S,W):- findall(Y,(verdeling(T,S,List),length(List,X),Y is X+1),List2), list_to_set(List2,Set), member(W,Set).
--Greet
Andere mogelijke oplossing:
verdeling(0, _, []). verdeling(Teams, Studenten, MogelijkeTeams):- AantalStudenten is Teams*Studenten, numlist(1, AantalStudenten, StudentenLijst), permutation(StudentenLijst, MogelijkePermutatie), maakteams(MogelijkePermutatie, Teams, MogelijkeTeams), aanvaardbareteams(MogelijkeTeams). maakteams([], _, []). maakteams(Permutatie, AantalTeams, [Team|OverigeTeams]):- length(Team, AantalTeams), append(Team, PermutatieRest, Permutatie), maakteams(PermutatieRest, AantalTeams, OverigeTeams). aanvaardbareteams(MogelijkeTeams):- sorteerdeellijsten(MogelijkeTeams, DeelsGesorteerd), sort(DeelsGesorteerd, GesorteerdeMogelijkeTeams), lijstengelijk(MogelijkeTeams, GesorteerdeMogelijkeTeams). sorteerdeellijsten([], []). sorteerdeellijsten([Lijst|Rest], [GesorteerdeLijst|GesorteerdeDeelLijsten]):- sort(Lijst, GesorteerdeLijst), sorteerdeellijsten(Rest, GesorteerdeDeelLijsten). lijstengelijk([], []). lijstengelijk([El1|Rest1], [El2|Rest2]):- El1 == El2, lijstengelijk(Rest1, Rest2).
--Harm.de.weirdt 12 jan 2012 14:22 (CET)