Declaratieve Talen/Oplossing Min-max: verschil tussen versies
Naar navigatie springen
Naar zoeken springen
k Dtopl5 moved to Declaratieve Talen/Oplossing Min-max: correcte naamgeving |
→Een oplossing:: alternatief |
||
Regel 9: | Regel 9: | ||
data Doosboom = Doos Int [Bolboom] Int deriving Show | data Doosboom = Doos Int [Bolboom] Int deriving Show | ||
data Bolboom = Bol Int [Doosboom] Int deriving Show | data Bolboom = Bol Int [Doosboom] Int deriving Show | ||
getWaardeBol :: Bolboom -> Int | getWaardeBol :: Bolboom -> Int | ||
getWaardeBol (Bol id [] w) = w | getWaardeBol (Bol id [] w) = w | ||
Regel 31: | Regel 31: | ||
berekenBolboom :: Bolboom -> Bolboom | berekenBolboom :: Bolboom -> Bolboom | ||
berekenBolboom (Bol id bomen w) = Bol id [(berekenDoosboom d) | d <- bomen] (getWaardeBol (Bol id bomen w)) | berekenBolboom (Bol id bomen w) = Bol id [(berekenDoosboom d) | d <- bomen] (getWaardeBol (Bol id bomen w)) | ||
=== alternatieve oplossing === | |||
data Maxboom = Max Int [Minboom] Int deriving Show | |||
data Minboom = Min Int [Maxboom] Int deriving Show | |||
complete_max::Maxboom -> Maxboom | |||
------------------------------ | |||
complete_max (Max id minbomen w) = | |||
if w /= -1 | |||
then (Max id minbomen w) | |||
else let completed_minbomen = map complete_min minbomen | |||
max_w = maximum [winst | (Min id maxbomen winst) <- completed_minbomen] | |||
in (Max id completed_minbomen max_w) | |||
complete_min::Minboom -> Minboom | |||
-------------------------------- | |||
complete_min (Min id maxbomen (-1)) = | |||
let completed_maxbomen = map complete_max maxbomen | |||
min_w = minimum [winst | (Max id minbomen winst) <- (map complete_max maxbomen)] | |||
in (Min id completed_maxbomen (minimum [winst | (Max id minbomen winst) <- (map complete_max maxbomen)])) | |||
complete_min (Min id maxbomen w) = (Min id maxbomen w) | |||
--[[Gebruiker:Beau|Beau]] 17 jun 2006 17:34 (CEST) |
Versie van 17 jun 2006 15:34
Een oplossing:
Probeer met volgend commando om bovenstaand voorbeeld te laten berekenen:
Main> berekenDoosboom (Doos 0 [Bol 1 [Doos 2 [] 1, Doos 3 [] 2] 2, Bol 4 [Doos 5 [] 3, Doos 6 [] 4] 0, Bol 7 [Doos 8 [] 5, Doos 9 [] 6] 0] 0) Doos 0 [Bol 1 [Doos 2 [] 1,Doos 3 [] 2] 1,Bol 4 [Doos 5 [] 3,Doos 6 [] 4] 3,Bol 7 [Doos 8 [] 5,Doos 9 [] 6] 5] 5
import List data Doosboom = Doos Int [Bolboom] Int deriving Show data Bolboom = Bol Int [Doosboom] Int deriving Show getWaardeBol :: Bolboom -> Int getWaardeBol (Bol id [] w) = w getWaardeBol (Bol id doosbomen w) = let (eerste:rest) = sort [getWaardeDoos d | d <- doosbomen] in eerste getWaardeDoos :: Doosboom -> Int getWaardeDoos (Doos id [] w) = w getWaardeDoos (Doos id bolbomen w) = let (eerste:rest) = reverse (sort [getWaardeBol b | b <- bolbomen]) in eerste berekenDoosboom :: Doosboom -> Doosboom berekenDoosboom (Doos id bomen w) = Doos id [(berekenBolboom b) | b <- bomen] (getWaardeDoos (Doos id bomen w)) berekenBolboom :: Bolboom -> Bolboom berekenBolboom (Bol id bomen w) = Bol id [(berekenDoosboom d) | d <- bomen] (getWaardeBol (Bol id bomen w))
alternatieve oplossing
data Maxboom = Max Int [Minboom] Int deriving Show data Minboom = Min Int [Maxboom] Int deriving Show complete_max::Maxboom -> Maxboom ------------------------------ complete_max (Max id minbomen w) = if w /= -1 then (Max id minbomen w) else let completed_minbomen = map complete_min minbomen max_w = maximum [winst | (Min id maxbomen winst) <- completed_minbomen] in (Max id completed_minbomen max_w) complete_min::Minboom -> Minboom -------------------------------- complete_min (Min id maxbomen (-1)) = let completed_maxbomen = map complete_max maxbomen min_w = minimum [winst | (Max id minbomen winst) <- (map complete_max maxbomen)] in (Min id completed_maxbomen (minimum [winst | (Max id minbomen winst) <- (map complete_max maxbomen)])) complete_min (Min id maxbomen w) = (Min id maxbomen w)
--Beau 17 jun 2006 17:34 (CEST)