Algebra I
Eerste zit 2005-06, Wiskunde
Theorievragen
Theorievraag 1
Zij G een groep en zij N een normaaldeler van G. Bewijs dat er een bijectie bestaat tussen de normaaldelers van G die N omvatten en de normaaldelers van G/N. Je mag hierbij het enkel feit gebruiken dat het beeld en het inverse beeld van een deelgroep onder een groepsmorfisme weer een deelgroep is. Al de rest moet bewezen worden.
Theorievraag 2
Veronderstel dat R een hoofdideaaldomein is, en zij r een irreducibel element in R. Bewijs dat (r) dan een maximaal ideaal van R is. Geef ook een voorbeeld van een ring R, commutatief en met eenheidselement, en een irreducibel element r in R, zodat (r) geen maximaal ideaal van R is.
Theorievraag 3
Bewijs de stelling van Kronecker:
"Zij K een veld en zij f een niet-constante veelterm in K[X], dan heeft f een wortel in een velduitbreiding van K."
Snelheidsvragen
(Dit zijn de verraderlijke vraagjes die Veys op het mondeling examen stelt en die je *niet* mag voorbereiden, je krijgt er ongeveer 1 minuut tijd voor. Vaak zit er een addertje onder het gras. Wees dus niet te "snel".)
- Bestaat er een algebraïsch gesloten veld dat strikt omvat?
- Waar of fout? "Een groep is eindig als en slechts als alle elementen eindige orde hebben.
Oefeningen
Oefening 1
Zij G een groep met precies twee niet-triviale deelgroepen.
a) Bewijs dat G cyclisch is. b) Bewijs dat de orde van G van de vorm p³ of pq is, voor zekere priemgetallen p en q.
Oefening 2
Met welke ring is isomorf? Bewijs je antwoord.
Oefening 3
Zijn velden. De Galoisgroep Gal(E, F) van E en F wordt gedefinieerd als de groep van alle veldautomorfismen (met andere woorden, ringautomorfismen van E waarvoor geldt dat ) die voldoen aan , voor alle f in F. (Hierbij is de groepsbewerking samenstelling van afbeeldingen.) Toon aan dat .