Uit Wina Examenwiki
Versie door 10.0.8.189 (overleg) op 27 jun 2007 om 14:54
Naar navigatie springen Naar zoeken springen

Algebraïsche structuren is een vak uit het tweede trimester, gedoceerd door professor Joost van Hamel. Het vak werd in het academiejaar 2006-2007 voor het eerst gegeven aan 1e Bachelor Wiskunde en 1e Bachelor Fysica (waar het een keuzevak is). Er is geen handboek, enkel een cursus, bestaande uit 7 hoofdstukken. Als leerstof wordt een inleiding gegeven tot groeptheorie (groepen, ringen, velden) en ook duale ruimtes en billineaire vormen komen aan bod. Het vak bouwt gedeeltelijk voor op de leerstof van Lineaire Algebra en soms zal professor van Hamel dan ook verwijzen naar het handboek van dat vak, 'Vectoren en Matrices'.

Examens

Examen 27 juni 2007

1:

  • Geef en bewijs de congruentie van Euler en toon aan hoe je hieruit de Kleine Stelling van Fermat kunt halen.
  • Is de volgende redenering correct: 3nmod17, ... Motiveer. (weet ik niet meer juist?)

2:

  • Zij G een groep waarvan alle elementen orde 1 of 2 hebben. Bewijs dat G abels is.
  • Is G isomorf met /2 ?

3:

  • Zij p en q twee priemgetallen met q>p, zodanig dat α=pq1 priem is.
  • Bewijs dat p=2
  • Bestaat de inverse van q¯ in /α (of: geef de inverse?)
  • Bereken (q¯)pq in /α.

4:

  • Bereken in /26: 2¯(x12+x)=4¯

5: Zij F een n x n matrix over een eindig veld met karakteristiek p met p een priemgetal, bewijs dat F p1=In als er n verschillende eigenvectoren zijn van F die allemaal in (Z/pZ)x zitten.

    • Haal je hier geen eigenwaarden en eigenvectoren door elkaar?

6:

  • geef de definitie van een linkergroepactie
  • reele vectorruimte ofzo
  • geef een basis
  • iets met duale dinges.


Proefexamen 2007

De opgavesen de oplossingen