Topologie

Uit Wina Examenwiki
Naar navigatie springen Naar zoeken springen

Examen 25 januari eerste zit 2007-2008

Eerste zit 2007-2008

== examen 25 januari 2008

Oefening 1

Zij L=(23,3i).

a) Is L=(233i)? Bepaal een minimale veelterm van 233i over .

b) Bepaal G(L,) en LG(L,). Met welke groep is G(L,) isomorf?

Oefening 2

Zij FK velden en K een eindige separabele uitbreiding van F. Toon aan:

K is normaal over F voor elke velduitbreiding L van K en elk ringmorfisme σ:KL met σ|F=IdF geldt: σ(K)K.

Tweede zit 1999-2000

Oefening 1

b) Waar of niet waar? Zij KL velden en a,bL met dezelfde minimale veelterm f(x) over K. Veronderstel dat L een eindige normale uitbreiding is over K. Dan bestaat er een σG(L:K) zodat σ(a)=b.

Oefening 2

Zij E een eindige normale uitbreiding van , met Galoisgroep G(E:)4,+.

a) Bewijs dat er a,b bestaan zodat E=(a+b).

b) Geef de stabiele velden t.o.v. E en .

Oefening 3

Geef een basis van de vectorruimte (1+53,34) over het veld (3).

Eerste zit 2001-02

Oefening 1

Zij K een eindige uitbreiding van het veld . zij g(x1,,xn) een niet nul veelterm over K. Zij A een deelverzameling van n en veronderstel dat g nul is op elk element van A. Gebruik Galoistheorie om een niet nul veelterm h(x1,,xn) over te construeren die nul is op elk element van A.

Eerste zit 2002-03

Oefening 1

Waar is niet waar? (Bewijs of geef een tegenvoorbeeld)

a) Zij KL een velduitbreiding van graad 2. Dan is L normaal over K.

b) Zij L=K(α). als de uitbreidingsgraad [L:K] oneven is, dan is L=K(α2).

Oefening 2

Zij p2 priem, en zij ξ een complexe primitieve p-de eenheidswortel. dan is de Galoisgroep G((ξ),) isomorf met de multiplicatieve groep p×. Zij χ het unieke niet-triviale groepsmorfisme van p× naar {1,-1},. en stel α gelijk aan s=1p1χ(s)ξs.

a) toon aan dat er een uniek deelveld K van (ξ) bestaat met uitbreidingsgraad 2 over .

b) Fixeer een isomorfisme ψ:G((ξ),)p×. Bewijs dat, voor elk automorfisme σG((ξ),), het beeld van α onder σ gelijk is aan (χψ)(σ) maal α.

c) toon aan dat K=(α).