: verschil tussen versies
Geen bewerkingssamenvatting |
k Benjamin.de roeck heeft pagina Algebraïsche getaltheorie hernoemd naar Algebraïsche getaltheorie |
||
(19 tussenliggende versies door 10 gebruikers niet weergegeven) | |||
Regel 1: | Regel 1: | ||
== | =Samenvattingen= | ||
[[Algebraïsche getaltheorie/Samenvattingen| Klik hier om de samenvattingen te bekijken]] | |||
=Examenvragen= | |||
== Andere examens == | |||
*[[Media:GetalMaJuni09.pdf|juni 2009]] | |||
*[[Media:Getal2Ljan07.pdf|januari 2007]] | |||
*[[Media:Getal2Ljan04.PDF|januari 2004]] | |||
*[[Media:Getal2Ljan03.PDF|januari 2003]] | |||
==Exam January 2018== | |||
All questions were open book. Questions 1 and 2 had to explained orally. | |||
===Question 1=== | |||
* In the proof of Theorem 4.16, why is (O_K)/(pO_K) isomorphic to (Z/pZ)^n? | |||
* In the proof of Lemma 5.13, why does the case I=O_K suffice? | |||
* In the first lines section 8.1, why is Phi_m(X) in Z[X]? | |||
* In the proof of Theorem 8.10, why is pa_i = Tr(\alpha \zeta_p^{-i} - \alpha \zeta)? | |||
===Question 2=== | |||
For this question, a formula for the discriminant of a degree 3 polynomial was given on the blackboard. | |||
Let f_1 = X^3+X+1, f_2 = X^3+X^2-2X+1. Let a_i be a root of f_i. | |||
* Show that f_1 and f_2 are irreducible over Q. | |||
* Let K_i be Q(a_i), show that O_{K_i} = Z[a_i] for i=1,2. | |||
* Show that the groups of units of O_{K_1} and O_{K_2} are isomorphic. | |||
* Give a method for determining whether K_1 and K_2 are isomorphic as fields. | |||
===Question 3=== | |||
Let f = prod(X-theta_i, i=1..n) be a monic polynomial over Q. Its discriminant is defined as disc(f) = prod((theta_i - theta_j)^2, 1\leq i<j\leq n). Let m be an integer and define f_m = X^3+(m+3)X^2+mX-1. We have disc(f_m)=(m^2+3m+9)^2. Let a_m be a root of f_m. | |||
* Show that f_m is irreducible over Q and that K_m = Q(a_m) is the splitting field of f, for all m. (Hint: let f be an irreducible of degree n in Q[X] and let K be its splitting field. Then Gal(K/Q)\subseteq A_n iff disc(f) is a square in Q). | |||
* Describe the group of units in O_{K_m}. | |||
* Find sufficient conditions on m such that O_{K_m} = Z[a_m]. (Hint: how are disc(f_m) and Delta_{K_m/Q}(1, a_m, a_m^2) related?) | |||
Now fix an integer s such that the condition from the last point holds, put K = K_s and f_s = f. | |||
* Find the set of primes S that ramify in K. | |||
* For p not in S, what are the possible factorizations of pO_K in O_K? Give an example of each of those. What can you say about the factorization of f modulo p? | |||
* (Bonus) Prove the hint in the first point of this exercise. | |||
===Question 4=== | |||
Compute the class group of Q(sqrt(-30)) and give a representative of each in element in the group. | |||
==Examen Juni 2012== | |||
[[Media:alggetalthe2012.pdf| Juni 2012]] | |||
==Examen Juni 2011== | |||
[[Media:Examen2011.pdf|Juni 2011]] | |||
==Examen van 29 augustus 2008== | |||
De eerste vraag is gesloten boek. | De eerste vraag is gesloten boek. | ||
* Veronderstel dat <math>[K : \mathbb{Q}] = n</math>. Bewijs dat <math>\alpha_1,\alpha_2,\,\cdots,\alpha_n \in K </math> lineair onafhankelijk zijn over <math>\mathbb{Q}</math> als en slechts als <math>\Delta\left(\alpha_1,\alpha_2,\,\cdots,\alpha_n\right) \neq 0</math>. | * Veronderstel dat <math>[K : \mathbb{Q}] = n</math>. Bewijs dat <math>\alpha_1,\alpha_2,\,\cdots,\alpha_n \in K </math> lineair onafhankelijk zijn over <math>\mathbb{Q}</math> als en slechts als <math>\Delta\left(\alpha_1,\alpha_2,\,\cdots,\alpha_n\right) \neq 0</math>. | ||
* Ontbind <math>2\mathcal{O}_{\mathbb{Q}\left(\xi_{23}\right)}</math> in priemidealen in <math>\mathcal{O}_{\mathbb{Q}\left(\xi_{23}\right)}</math>. Hint: probeer met behulp van kwadratische Gauss-sommen in te zien dat <math>\mathbb{Q}\left(\sqrt{-23}\right) \subseteq \mathbb{Q}\left(\xi_{23}\right)</math>. | * Ontbind <math>2\mathcal{O}_{\mathbb{Q}\left(\xi_{23}\right)}</math> in priemidealen in <math>\mathcal{O}_{\mathbb{Q}\left(\xi_{23}\right)}</math>. Hint: probeer met behulp van kwadratische Gauss-sommen in te zien dat <math>\mathbb{Q}\left(\sqrt{-23}\right) \subseteq \mathbb{Q}\left(\xi_{23}\right)</math>. | ||
Regel 17: | Regel 60: | ||
# Geef alle priemgetallen p waarboven juist 4 priemidealen liggen. [Over welk getallenveld gaat dit?] | # Geef alle priemgetallen p waarboven juist 4 priemidealen liggen. [Over welk getallenveld gaat dit?] | ||
# ... | # ... | ||
[[category: mw]] | [[category: mw]] |
Huidige versie van 21 sep 2019 17:12
Samenvattingen
Klik hier om de samenvattingen te bekijken
Examenvragen
Andere examens
Exam January 2018
All questions were open book. Questions 1 and 2 had to explained orally.
Question 1
- In the proof of Theorem 4.16, why is (O_K)/(pO_K) isomorphic to (Z/pZ)^n?
- In the proof of Lemma 5.13, why does the case I=O_K suffice?
- In the first lines section 8.1, why is Phi_m(X) in Z[X]?
- In the proof of Theorem 8.10, why is pa_i = Tr(\alpha \zeta_p^{-i} - \alpha \zeta)?
Question 2
For this question, a formula for the discriminant of a degree 3 polynomial was given on the blackboard. Let f_1 = X^3+X+1, f_2 = X^3+X^2-2X+1. Let a_i be a root of f_i.
- Show that f_1 and f_2 are irreducible over Q.
- Let K_i be Q(a_i), show that O_{K_i} = Z[a_i] for i=1,2.
- Show that the groups of units of O_{K_1} and O_{K_2} are isomorphic.
- Give a method for determining whether K_1 and K_2 are isomorphic as fields.
Question 3
Let f = prod(X-theta_i, i=1..n) be a monic polynomial over Q. Its discriminant is defined as disc(f) = prod((theta_i - theta_j)^2, 1\leq i<j\leq n). Let m be an integer and define f_m = X^3+(m+3)X^2+mX-1. We have disc(f_m)=(m^2+3m+9)^2. Let a_m be a root of f_m.
- Show that f_m is irreducible over Q and that K_m = Q(a_m) is the splitting field of f, for all m. (Hint: let f be an irreducible of degree n in Q[X] and let K be its splitting field. Then Gal(K/Q)\subseteq A_n iff disc(f) is a square in Q).
- Describe the group of units in O_{K_m}.
- Find sufficient conditions on m such that O_{K_m} = Z[a_m]. (Hint: how are disc(f_m) and Delta_{K_m/Q}(1, a_m, a_m^2) related?)
Now fix an integer s such that the condition from the last point holds, put K = K_s and f_s = f.
- Find the set of primes S that ramify in K.
- For p not in S, what are the possible factorizations of pO_K in O_K? Give an example of each of those. What can you say about the factorization of f modulo p?
- (Bonus) Prove the hint in the first point of this exercise.
Question 4
Compute the class group of Q(sqrt(-30)) and give a representative of each in element in the group.
Examen Juni 2012
Examen Juni 2011
Examen van 29 augustus 2008
De eerste vraag is gesloten boek.
- Veronderstel dat . Bewijs dat lineair onafhankelijk zijn over als en slechts als .
- Ontbind in priemidealen in . Hint: probeer met behulp van kwadratische Gauss-sommen in te zien dat .
- Zij met priem. Bewijs dat er een priemideaal van graad 1 in bestaat zodat en vind .
- Zij met priem en . Zij een priemideaal van boven .
- Bepaal expliciet de ramificatie-index , de graad en het aantal priemidealen boven . Hint: vind ondergrenzen en bewijs gelijkheid.
- We weten dat . Beschrijf de inertie- en decompositiegroepen van m.b.v. de gegeven multiplicatieve groepen.
Examen van 8 juni 2009
- Zij K een getallenveld. Toon aan dat er een integrale basis voor bestaat. [enige vraag die gesloten boek was]
- Wat is de structuur van de groep van de ideaalklassen van ?
- ...
- Geef alle priemgetallen p waarboven juist 4 priemidealen liggen. [Over welk getallenveld gaat dit?]
- ...