Analyse II

Uit Wina Examenwiki
Naar navigatie springen Naar zoeken springen

Algemene informatie

Analyse 2 is deels schriftelijk en deels mondeling en open boek. Zorg ervoor dat je zeer secuur werkt, de prof hecht hieraan wel wat belang. Op het mondeling is professor Vaes zeer vriendelijk, en als je iets niet kan zal hij je er stap voor stap doorheen helpen.

Examens - Professor Vaes

Academiejaar 2011 - 2012

Examen Analyse II 16 januari 2012

Examen Analyse II 1 februari 2012

Examen Analyse II 6 september 2012

Academiejaar 2009 - 2010

Examen Analyse II 28 januari 2010 (Kortrijk)

Examen Analyse II 27 januari 2010

Examen Analyse II 11 januari 2010

Academiejaar 2008-2009

Examen Analyse II 26 januari 2009

Examen Analyse II 16 januari 2009

Academiejaar 2007-2008

|Examen Analyse II 21 januari 2008 (Kortrijk)

Examen Analyse II 9 juni 2008

Examen Analyse II 23 juni 2008

Examen Analyse II 2 september 2008

Academiejaar 2006-2007

Examen Analyse II 19 januari 2007

Examen Analyse II 22 januari 2007 (Kortrijk)

Examen Analyse II 26 januari 2007

Examen Analyse II 27 augustus 2007

Examens - Professor Van Daele

Academiejaar 2005-2006

2006-09-05

  1. Op de volgende vragen kan je antwoorden in enkele lijntjes.
    • Bewijs het lemma op p 17: ||AB||som||A||som||B||som
    • Onderaan p 18 concluderen we dat ϕy een contractie is. Voor welke metriek is dit?
    • Brengen volgende verzamelingen de Borel-σ-algebra op 2 voort? Bewijs.
      • {[a,b]×|a,b}
      • {[a,b]×|a,b}{×[c,d]|c,d}
      • {[a,a]×[c,d]|a,c,d}
    • Op p 106 bovenaan, bij het bewijs van de stelling van Dirichlet, gebruiken we het lemma van Riemann-Lebesgue. Op welke functie passen we dit toe? Toon nauwkeurig aan dat we dit mogen doen.
  2. Neem Dα={0<y,0<x<yα<1}2. Neem f=1(x+y)2. Voor welke α is Dαfdλ<?
  3. Een stuk theorie, analoog aan de stelling van Dirichlet (maar met C1 functies) afleiden in enkele stapjes. De exacte vraag weet ik niet meer.
  4. Stel V=(3x,2z,1), K={(x,y,z):x2+y2z2/4}
    • Bewijs dat δK𝐕𝐧=3.
    • Verifieer de divergentiestelling voor 𝐕 en K.